
gnuplot

gnuplot ii

COLLABORATORS

TITLE :

gnuplot

ACTION NAME DATE SIGNATURE

WRITTEN BY April 15, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gnuplot iii

Contents

1 gnuplot 1

1.1 gnuplot.guide . 1

1.2 gnuplot.guide/gnuplot . 2

1.3 gnuplot.guide/Copyright . 3

1.4 gnuplot.guide/Introduction . 4

1.5 gnuplot.guide/Seeking-assistance . 5

1.6 gnuplot.guide/What’s_New_in_version_3.7 . 6

1.7 gnuplot.guide/Batch-Interactive_Operation . 9

1.8 gnuplot.guide/Command-line-editing . 9

1.9 gnuplot.guide/Comments . 11

1.10 gnuplot.guide/Coordinates . 11

1.11 gnuplot.guide/Environment . 12

1.12 gnuplot.guide/Expressions . 13

1.13 gnuplot.guide/Functions . 13

1.14 gnuplot.guide/abs . 15

1.15 gnuplot.guide/acos . 16

1.16 gnuplot.guide/acosh . 16

1.17 gnuplot.guide/arg . 16

1.18 gnuplot.guide/asin . 16

1.19 gnuplot.guide/asinh . 17

1.20 gnuplot.guide/atan . 17

1.21 gnuplot.guide/atan2 . 17

1.22 gnuplot.guide/atanh . 18

1.23 gnuplot.guide/besj0 . 18

1.24 gnuplot.guide/besj1 . 18

1.25 gnuplot.guide/besy0 . 18

1.26 gnuplot.guide/besy1 . 19

1.27 gnuplot.guide/ceil . 19

1.28 gnuplot.guide/cos . 19

1.29 gnuplot.guide/cosh . 19

gnuplot iv

1.30 gnuplot.guide/erf . 20

1.31 gnuplot.guide/erfc . 20

1.32 gnuplot.guide/exp . 20

1.33 gnuplot.guide/floor . 20

1.34 gnuplot.guide/gamma . 21

1.35 gnuplot.guide/ibeta . 21

1.36 gnuplot.guide/inverf . 21

1.37 gnuplot.guide/igamma . 21

1.38 gnuplot.guide/imag . 21

1.39 gnuplot.guide/invnorm . 22

1.40 gnuplot.guide/int . 22

1.41 gnuplot.guide/lgamma . 22

1.42 gnuplot.guide/log . 22

1.43 gnuplot.guide/log10 . 22

1.44 gnuplot.guide/norm . 23

1.45 gnuplot.guide/rand . 23

1.46 gnuplot.guide/real . 23

1.47 gnuplot.guide/sgn . 23

1.48 gnuplot.guide/sin . 23

1.49 gnuplot.guide/sinh . 24

1.50 gnuplot.guide/sqrt . 24

1.51 gnuplot.guide/tan . 24

1.52 gnuplot.guide/tanh . 24

1.53 gnuplot.guide/column . 25

1.54 gnuplot.guide/tm_hour . 25

1.55 gnuplot.guide/tm_mday . 25

1.56 gnuplot.guide/tm_min . 25

1.57 gnuplot.guide/tm_mon . 26

1.58 gnuplot.guide/tm_sec . 26

1.59 gnuplot.guide/tm_wday . 26

1.60 gnuplot.guide/tm_yday . 27

1.61 gnuplot.guide/tm_year . 27

1.62 gnuplot.guide/valid . 27

1.63 gnuplot.guide/Operators . 27

1.64 gnuplot.guide/Unary . 28

1.65 gnuplot.guide/Binary . 28

1.66 gnuplot.guide/Ternary . 29

1.67 gnuplot.guide/User-defined . 30

1.68 gnuplot.guide/Glossary . 31

gnuplot v

1.69 gnuplot.guide/Plotting . 32

1.70 gnuplot.guide/Start-up . 33

1.71 gnuplot.guide/Substitution . 33

1.72 gnuplot.guide/Syntax . 34

1.73 gnuplot.guide/Time-Date_data . 36

1.74 gnuplot.guide/Commands . 37

1.75 gnuplot.guide/cd . 38

1.76 gnuplot.guide/call . 39

1.77 gnuplot.guide/clear . 40

1.78 gnuplot.guide/exit . 41

1.79 gnuplot.guide/fit . 41

1.80 gnuplot.guide/adjustable_parameters . 44

1.81 gnuplot.guide/beginner’s_guide . 44

1.82 gnuplot.guide/error_estimates . 46

1.83 gnuplot.guide/statistical_overview . 46

1.84 gnuplot.guide/practical_guidelines . 47

1.85 gnuplot.guide/fit_controlling . 48

1.86 gnuplot.guide/control_variables . 49

1.87 gnuplot.guide/environment_variables . 50

1.88 gnuplot.guide/multi-branch . 50

1.89 gnuplot.guide/starting_values . 51

1.90 gnuplot.guide/tips . 52

1.91 gnuplot.guide/help . 53

1.92 gnuplot.guide/if . 53

1.93 gnuplot.guide/load . 54

1.94 gnuplot.guide/pause . 55

1.95 gnuplot.guide/plot . 56

1.96 gnuplot.guide/data-file . 57

1.97 gnuplot.guide/every . 59

1.98 gnuplot.guide/example_datafile . 60

1.99 gnuplot.guide/index . 61

1.100gnuplot.guide/smooth . 61

1.101gnuplot.guide/special-filenames . 63

1.102gnuplot.guide/thru . 65

1.103gnuplot.guide/using . 65

1.104gnuplot.guide/errorbars . 68

1.105gnuplot.guide/parametric . 69

1.106gnuplot.guide/ranges . 70

1.107gnuplot.guide/title . 72

gnuplot vi

1.108gnuplot.guide/with . 73

1.109gnuplot.guide/print . 75

1.110gnuplot.guide/pwd . 75

1.111gnuplot.guide/quit . 76

1.112gnuplot.guide/replot . 76

1.113gnuplot.guide/reread . 77

1.114gnuplot.guide/reset . 79

1.115gnuplot.guide/save . 79

1.116gnuplot.guide/set-show . 80

1.117gnuplot.guide/angles . 84

1.118gnuplot.guide/arrow . 84

1.119gnuplot.guide/autoscale . 86

1.120gnuplot.guide/parametric_mode . 88

1.121gnuplot.guide/polar_mode . 88

1.122gnuplot.guide/bar . 89

1.123gnuplot.guide/bmargin . 89

1.124gnuplot.guide/border . 89

1.125gnuplot.guide/boxwidth . 91

1.126gnuplot.guide/clabel . 91

1.127gnuplot.guide/clip . 92

1.128gnuplot.guide/cntrparam . 93

1.129gnuplot.guide/contour . 95

1.130gnuplot.guide/data_style . 96

1.131gnuplot.guide/dgrid3d . 97

1.132gnuplot.guide/dummy . 98

1.133gnuplot.guide/encoding . 99

1.134gnuplot.guide/format . 99

1.135gnuplot.guide/format_specifiers . 100

1.136gnuplot.guide/time-date_specifiers . 101

1.137gnuplot.guide/function_style . 102

1.138gnuplot.guide/functions . 103

1.139gnuplot.guide/grid . 103

1.140gnuplot.guide/hidden3d . 104

1.141gnuplot.guide/isosamples . 106

1.142gnuplot.guide/key . 107

1.143gnuplot.guide/label . 110

1.144gnuplot.guide/linestyle . 111

1.145gnuplot.guide/lmargin . 113

1.146gnuplot.guide/locale . 113

gnuplot vii

1.147gnuplot.guide/logscale . 113

1.148gnuplot.guide/mapping . 114

1.149gnuplot.guide/margin . 115

1.150gnuplot.guide/missing . 116

1.151gnuplot.guide/multiplot . 116

1.152gnuplot.guide/mx2tics . 118

1.153gnuplot.guide/mxtics . 118

1.154gnuplot.guide/my2tics . 119

1.155gnuplot.guide/mytics . 119

1.156gnuplot.guide/mztics . 120

1.157gnuplot.guide/offsets . 120

1.158gnuplot.guide/origin . 120

1.159gnuplot.guide/output . 121

1.160gnuplot.guide/parametric_ . 122

1.161gnuplot.guide/pointsize . 123

1.162gnuplot.guide/polar . 124

1.163gnuplot.guide/rmargin . 125

1.164gnuplot.guide/rrange . 125

1.165gnuplot.guide/samples . 125

1.166gnuplot.guide/size . 126

1.167gnuplot.guide/style . 127

1.168gnuplot.guide/boxerrorbars . 130

1.169gnuplot.guide/boxes . 131

1.170gnuplot.guide/boxxyerrorbars . 131

1.171gnuplot.guide/candlesticks . 131

1.172gnuplot.guide/dots . 132

1.173gnuplot.guide/financebars . 132

1.174gnuplot.guide/fsteps . 133

1.175gnuplot.guide/histeps . 133

1.176gnuplot.guide/impulses . 134

1.177gnuplot.guide/lines . 134

1.178gnuplot.guide/linespoints . 134

1.179gnuplot.guide/points . 135

1.180gnuplot.guide/steps . 135

1.181gnuplot.guide/vector . 135

1.182gnuplot.guide/xerrorbars . 135

1.183gnuplot.guide/xyerrorbars . 136

1.184gnuplot.guide/yerrorbars . 137

1.185gnuplot.guide/surface . 137

gnuplot viii

1.186gnuplot.guide/terminal . 138

1.187gnuplot.guide/aifm . 140

1.188gnuplot.guide/cgm . 140

1.189gnuplot.guide/corel . 143

1.190gnuplot.guide/dumb . 143

1.191gnuplot.guide/dxf . 144

1.192gnuplot.guide/eepic . 144

1.193gnuplot.guide/epson-180dpi . 145

1.194gnuplot.guide/fig . 146

1.195gnuplot.guide/gif . 147

1.196gnuplot.guide/gpic . 148

1.197gnuplot.guide/hp2623a . 150

1.198gnuplot.guide/hp2648 . 150

1.199gnuplot.guide/hp500c . 150

1.200gnuplot.guide/hpgl . 150

1.201gnuplot.guide/hpljii . 151

1.202gnuplot.guide/hppj . 152

1.203gnuplot.guide/imagen . 152

1.204gnuplot.guide/latex . 152

1.205gnuplot.guide/mf . 153

1.206gnuplot.guide/mif . 155

1.207gnuplot.guide/pbm . 156

1.208gnuplot.guide/png . 156

1.209gnuplot.guide/postscript . 157

1.210gnuplot.guide/pslatex_and_pstex . 160

1.211gnuplot.guide/pstricks . 161

1.212gnuplot.guide/qms . 161

1.213gnuplot.guide/regis . 161

1.214gnuplot.guide/sun . 162

1.215gnuplot.guide/tek410x . 162

1.216gnuplot.guide/table . 162

1.217gnuplot.guide/tek40 . 163

1.218gnuplot.guide/texdraw . 163

1.219gnuplot.guide/tgif . 163

1.220gnuplot.guide/tkcanvas . 164

1.221gnuplot.guide/tpic . 166

1.222gnuplot.guide/x11 . 166

1.223gnuplot.guide/xlib . 169

1.224gnuplot.guide/tics . 170

gnuplot ix

1.225gnuplot.guide/ticslevel . 170

1.226gnuplot.guide/ticscale . 171

1.227gnuplot.guide/timestamp . 171

1.228gnuplot.guide/timefmt . 172

1.229gnuplot.guide/title_ . 173

1.230gnuplot.guide/tmargin . 174

1.231gnuplot.guide/trange . 174

1.232gnuplot.guide/urange . 174

1.233gnuplot.guide/variables . 175

1.234gnuplot.guide/version . 175

1.235gnuplot.guide/view . 175

1.236gnuplot.guide/vrange . 176

1.237gnuplot.guide/x2data . 176

1.238gnuplot.guide/x2dtics . 177

1.239gnuplot.guide/x2label . 177

1.240gnuplot.guide/x2mtics . 177

1.241gnuplot.guide/x2range . 178

1.242gnuplot.guide/x2tics . 178

1.243gnuplot.guide/x2zeroaxis . 178

1.244gnuplot.guide/xdata . 178

1.245gnuplot.guide/xdtics . 179

1.246gnuplot.guide/xlabel . 180

1.247gnuplot.guide/xmtics . 181

1.248gnuplot.guide/xrange . 182

1.249gnuplot.guide/xtics . 184

1.250gnuplot.guide/xzeroaxis . 187

1.251gnuplot.guide/y2data . 187

1.252gnuplot.guide/y2dtics . 188

1.253gnuplot.guide/y2label . 188

1.254gnuplot.guide/y2mtics . 188

1.255gnuplot.guide/y2range . 188

1.256gnuplot.guide/y2tics . 189

1.257gnuplot.guide/y2zeroaxis . 189

1.258gnuplot.guide/ydata . 189

1.259gnuplot.guide/ydtics . 190

1.260gnuplot.guide/ylabel . 190

1.261gnuplot.guide/ymtics . 190

1.262gnuplot.guide/yrange . 190

1.263gnuplot.guide/ytics . 191

gnuplot x

1.264gnuplot.guide/yzeroaxis . 191

1.265gnuplot.guide/zdata . 191

1.266gnuplot.guide/zdtics . 191

1.267gnuplot.guide/zero . 192

1.268gnuplot.guide/zeroaxis . 192

1.269gnuplot.guide/zlabel . 193

1.270gnuplot.guide/zmtics . 193

1.271gnuplot.guide/zrange . 193

1.272gnuplot.guide/ztics . 194

1.273gnuplot.guide/shell . 194

1.274gnuplot.guide/splot . 195

1.275gnuplot.guide/data-file_ . 196

1.276gnuplot.guide/binary . 198

1.277gnuplot.guide/example_datafile_ . 199

1.278gnuplot.guide/matrix . 200

1.279gnuplot.guide/grid_data . 200

1.280gnuplot.guide/splot_overview . 201

1.281gnuplot.guide/test . 202

1.282gnuplot.guide/update . 202

1.283gnuplot.guide/Graphical_User_Interfaces . 203

1.284gnuplot.guide/Bugs . 203

1.285gnuplot.guide/Old_bugs . 204

1.286gnuplot.guide/Concept_Index . 206

1.287gnuplot.guide/Command_Index . 224

1.288gnuplot.guide/Options_Index . 226

1.289gnuplot.guide/Function_Index . 231

1.290gnuplot.guide/Terminal_Index . 234

gnuplot 1 / 236

Chapter 1

gnuplot

1.1 gnuplot.guide

Master Menu

GNUPLOT

An Interactive Plotting Program
Thomas Williams & Colin Kelley

Version 3.7 organized by: David Denholm

Copyright (C) 1986 - 1993, 1998 Thomas Williams, Colin Kelley

Mailing list for comments: info-gnuplot@dartmouth.edu
Mailing list for bug reports: bug-gnuplot@dartmouth.edu

This manual was prepared by Dick Crawford
3 December 1998

Major contributors (alphabetic order):

* Hans-Bernhard Broeker

* John Campbell

* Robert Cunningham

* David Denholm

* Gershon Elber

* Roger Fearick

* Carsten Grammes

* Lucas Hart

* Lars Hecking

gnuplot 2 / 236

* Thomas Koenig

* David Kotz

* Ed Kubaitis

* Russell Lang

* Alexander Lehmann

* Alexander Mai

* Carsten Steger

* Tom Tkacik

* Jos Van der Woude

* James R. Van Zandt

* Alex Woo

gnuplot

Commands

Graphical_User_Interfaces

Bugs

Concept_Index

Command_Index

Options_Index

Function_Index

Terminal_Index

1.2 gnuplot.guide/gnuplot

gnuplot

Copyright

Introduction

Seeking-assistance

gnuplot 3 / 236

What’s_New_in_version_3.7

Batch-Interactive_Operation

Command-line-editing

Comments

Coordinates

Environment

Expressions

Glossary

Plotting

Start-up

Substitution

Syntax

Time-Date_data

1.3 gnuplot.guide/Copyright

Copyright
=========

Copyright (C) 1986 - 1993, 1998 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its
documentation for any purpose with or without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation.

Permission to modify the software is granted, but not the right to
distribute the complete modified source code. Modifications are to be
distributed as patches to the released version. Permission to
distribute binaries produced by compiling modified sources is granted,
provided you

1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,

2. add special version identification to distinguish your version
in addition to the base release version number,

3. provide your name and address as the primary contact for the
support of your modified version, and

4. retain our contact information in regard to use of the base
software.

gnuplot 4 / 236

Permission to distribute the released version of the source code
along with corresponding source modifications in the form of a patch
file is granted with same provisions 2 through 4 for binary
distributions.

This software is provided "as is" without express or implied warranty
to the extent permitted by applicable law.

AUTHORS

Original Software:
Thomas Williams, Colin Kelley.

Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.

Gnuplot 3.0 additions:
Gershon Elber and many others.

1.4 gnuplot.guide/Introduction

Introduction
============

‘gnuplot‘ is a command-driven interactive function and data plotting
program. It is case sensitive (commands and function names written in
lowercase are not the same as those written in CAPS). All command
names may be abbreviated as long as the abbreviation is not ambiguous.
Any number of commands may appear on a line (with the exception that

load
or

call
must be the final command), separated by semicolons

(;). Strings are indicated with quotes. They may be either single or
double quotation marks, e.g.,

load "filename"
cd ’dir’

although there are some subtle differences (see ‘syntax‘ for more
details).

Any command-line arguments are assumed to be names of files
containing ‘gnuplot‘ commands, with the exception of standard X11
arguments, which are processed first. Each file is loaded with the

load
command, in the order specified. ‘gnuplot‘ exits after the last

file is processed. When no load files are named, ‘gnuplot‘ enters into
an interactive mode. The special filename "-" is used to denote
standard input. See "help batch/interactive" for more details.

Many ‘gnuplot‘ commands have multiple options. These options must

gnuplot 5 / 236

appear in the proper order, although unwanted ones may be omitted in
most cases. Thus if the entire command is "command a b c", then
"command a c" will probably work, but "command c a" will fail.

Commands may extend over several input lines by ending each line but
the last with a backslash (\). The backslash must be the _last_
character on each line. The effect is as if the backslash and newline
were not there. That is, no white space is implied, nor is a comment
terminated. Therefore, commenting out a continued line comments out
the entire command (see ‘comment‘). But note that if an error occurs
somewhere on a multi-line command, the parser may not be able to locate
precisely where the error is and in that case will not necessarily
point to the correct line.

In this document, curly braces ({}) denote optional arguments and a
vertical bar (|) separates mutually exclusive choices. ‘gnuplot‘
keywords or

help
topics are indicated by backquotes or ‘boldface‘

(where available). Angle brackets (<>) are used to mark replaceable
tokens. In many cases, a default value of the token will be taken for
optional arguments if the token is omitted, but these cases are not
always denoted with braces around the angle brackets.

For on-line help on any topic, type
help
followed by the name of

the topic or just
help
or ‘?‘ to get a menu of available topics.

The new ‘gnuplot‘ user should begin by reading about ‘plotting‘ (if
on-line, type ‘help plotting‘).
Simple Plots Demo
(http://www.gnuplot.vt.edu/gnuplot/gpdocs/simple.html)

1.5 gnuplot.guide/Seeking-assistance

Seeking-assistance
==================

There is a mailing list for ‘gnuplot‘ users. Note, however, that the
newsgroup

comp.graphics.apps.gnuplot

is identical to the mailing list (they both carry the same set of
messages). We prefer that you read the messages through the newsgroup
rather than subscribing to the mailing list. Administrative requests
should be sent to

majordomo@dartmouth.edu

Send a message with the body (not the subject) consisting of the
single word "help" (without the quotes) for more details.

gnuplot 6 / 236

The address for mailing to list members is:
info-gnuplot@dartmouth.edu

Bug reports and code contributions should be mailed to:
bug-gnuplot@dartmouth.edu

The list of those interested in beta-test versions is:
info-gnuplot-beta@dartmouth.edu

There is also a World Wide Web page with up-to-date information,
including known bugs:
http://www.cs.dartmouth.edu/gnuplot_info.html
(http://www.cs.dartmouth.edu/gnuplot_info.html)

Before seeking help, please check the
FAQ (Frequently Asked Questions) list. (http://www.ucc.ie/gnuplot/gnuplot-faq. ←↩

html) If you do not have a copy of the FAQ, you may
request a copy by email from the Majordomo address above, ftp a copy
from

ftp://ftp.ucc.ie/pub/gnuplot/faq,
ftp://ftp.gnuplot.vt.edu/pub/gnuplot/faq,

or see the WWW ‘gnuplot‘ page.

When posting a question, please include full details of the version
of ‘gnuplot‘, the machine, and operating system you are using. A
small script demonstrating the problem may be useful. Function plots
are preferable to datafile plots. If email-ing to info-gnuplot, please
state whether or not you are subscribed to the list, so that users who
use news will know to email a reply to you. There is a form for such
postings on the WWW site.

1.6 gnuplot.guide/What’s_New_in_version_3.7

What’s New in version 3.7
=========================

Gnuplot version 3.7 contains many new features. This section gives
a partial list and links to the new items in no particular order.

1. ‘fit f(x) ’file’ via‘ uses the Marquardt-Levenberg method to fit
data. (This is only slightly different from the ‘gnufit‘ patch
available for 3.5.)

2. Greatly expanded
using
command. See

using
.

3.
timefmt
allows for the use of dates as input and output for time

gnuplot 7 / 236

series plots. See ‘Time/Date data‘ and
timedat.dem. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/timedat.html)

4. Multiline labels and font selection in some drivers.

5. Minor (unlabeled) tics. See
mxtics
.

6.
key
options for moving the key box in the page (and even outside

of the plot), putting a title on it and a box around it, and more. See

key
.

7. Multiplots on a single logical page with
multiplot
.

8. Enhanced ‘postscript‘ driver with super/subscripts and font
changes. (This was a separate driver (‘enhpost‘) that was available as
a patch for 3.5.)

9. Second axes: use the top and right axes independently of the
bottom and left, both for plotting and labels. See

plot
.

10. Special datafile names ‘’-’‘ and ‘""‘. See
special-filenames
.

11. Additional coordinate systems for labels and arrows. See
‘coordinates‘.

12.
size
can try to plot with a specified aspect ratio.

13.
missing
now treats missing data correctly.

14. The
call
command:

load
with arguments.

15. More flexible ‘range‘ commands with ‘reverse‘ and ‘writeback‘
keywords.

16.
encoding
for multi-lingual encoding.

gnuplot 8 / 236

17. New ‘x11‘ driver with persistent and multiple windows.

18. New plotting styles:
xerrorbars
,
histeps
,
financebars
and

more. See
style
.

19. New tic label formats, including ‘"%l %L"‘ which uses the
mantissa and exponents to a given base for labels. See ‘set format‘.

20. New drivers, including ‘cgm‘ for inclusion into MS-Office
applications and ‘gif‘ for serving plots to the WEB.

21. Smoothing and spline-fitting options for
plot
. See
smooth
.

22.
margin
and

origin
give much better control over where a graph

appears on the page.

23.
border
now controls each border individually.

24. The new commands
if
and

reread
allow command loops.

25. Point styles and sizes, line types and widths can be specified
on the

plot
command. Line types and widths can also be specified for

grids, borders, tics and arrows. See
with
. Furthermore these types

may be combined and stored for further use. See
linestyle
.

26. Text (labels, tic labels, and the time stamp) can be written
vertically by those terminals capable of doing so.

gnuplot 9 / 236

1.7 gnuplot.guide/Batch-Interactive_Operation

Batch/Interactive Operation
===========================

‘gnuplot‘ may be executed in either batch or interactive modes, and
the two may even be mixed together on many systems.

Any command-line arguments are assumed to be names of files
containing ‘gnuplot‘ commands (with the exception of standard X11
arguments, which are processed first). Each file is loaded with the

load
command, in the order specified. ‘gnuplot‘ exits after the last

file is processed. When no load files are named, ‘gnuplot‘ enters into
an interactive mode. The special filename "-" is used to denote
standard input.

Both the
exit
and

quit
commands terminate the current command file

and
load
the next one, until all have been processed.

Examples:

To launch an interactive session:
gnuplot

To launch a batch session using two command files "input1" and
"input2":

gnuplot input1 input2

To launch an interactive session after an initialization file
"header" and followed by another command file "trailer":

gnuplot header - trailer

1.8 gnuplot.guide/Command-line-editing

Command-line-editing
====================

Command-line editing is supported by the Unix, Atari, VMS, MS-DOS
and OS/2 versions of ‘gnuplot‘. Also, a history mechanism allows
previous commands to be edited and re-executed. After the command line

gnuplot 10 / 236

has been edited, a newline or carriage return will enter the entire
line without regard to where the cursor is positioned.

(The readline function in ‘gnuplot‘ is not the same as the readline
used in GNU Bash and GNU Emacs. If the GNU version is desired, it may
be selected instead of the ‘gnuplot‘ version at compile time.)

The editing commands are as follows:

‘Line-editing‘:

^B moves back a single character.
^F moves forward a single character.
^A moves to the beginning of the line.
^E moves to the end of the line.
^H and DEL delete the previous character.
^D deletes the current character.
^K deletes from current position to the end of line.
^L,^R redraws line in case it gets trashed.
^U deletes the entire line.
^W deletes the last word.

‘History‘:

^P moves back through history.
^N moves forward through history.

On the IBM PC, the use of a TSR program such as DOSEDIT or CED may
be desired for line editing. The default makefile assumes that this is
the case; by default ‘gnuplot‘ will be compiled with no line-editing
capability. If you want to use ‘gnuplot‘’s line editing, set READLINE
in the makefile and add readline.obj to the link file. The following
arrow keys may be used on the IBM PC and Atari versions if readline is
used:

Left Arrow - same as ^B.
Right Arrow - same as ^F.
Ctrl Left Arrow - same as ^A.
Ctrl Right Arrow - same as ^E.
Up Arrow - same as ^P.
Down Arrow - same as ^N.

The Atari version of readline defines some additional key aliases:

Undo - same as ^L.
Home - same as ^A.
Ctrl Home - same as ^E.
Esc - same as ^U.
Help -

help
plus return.

Ctrl Help - ‘help ‘.

gnuplot 11 / 236

1.9 gnuplot.guide/Comments

Comments
========

Comments are supported as follows: a ‘#‘ may appear in most places
in a line and ‘gnuplot‘ will ignore the rest of the line. It will not
have this effect inside quotes, inside numbers (including complex
numbers), inside command substitutions, etc. In short, it works
anywhere it makes sense to work.

1.10 gnuplot.guide/Coordinates

Coordinates
===========

The commands
arrow
,
key
, and
label
allow you to draw something at

an arbitrary position on the graph. This position is specified by the
syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be ‘first‘, ‘second‘, ‘graph‘ or ‘screen‘.

‘first‘ places the x, y, or z coordinate in the system defined by
the left and bottom axes; ‘second‘ places it in the system defined by
the second axes (top and right); ‘graph‘ specifies the area within the
axes--0,0 is bottom left and 1,1 is top right (for splot, 0,0,0 is
bottom left of plotting area; use negative z to get to the base--see

ticslevel
); and ‘screen‘ specifies the screen area (the entire

area--not just the portion selected by
size
), with 0,0 at bottom left

and 1,1 at top right.

If the coordinate system for x is not specified, ‘first‘ is used.
If the system for y is not specified, the one used for x is adopted.

If one (or more) axis is timeseries, the appropriate coordinate
should be given as a quoted time string according to the

timefmt
format string. See
xdata
and

timefmt

gnuplot 12 / 236

. ‘gnuplot‘ will also accept an
integer expression, which will be interpreted as seconds from 1 January
2000.

1.11 gnuplot.guide/Environment

Environment
===========

A number of shell environment variables are understood by ‘gnuplot‘.
None of these are required, but may be useful.

If GNUTERM is defined, it is used as the name of the terminal type
to be used. This overrides any terminal type sensed by ‘gnuplot‘ on
start-up, but is itself overridden by the .gnuplot (or equivalent)
start-up file (see ‘start-up‘) and, of course, by later explicit
changes.

On Unix, AmigaOS, AtariTOS, MS-DOS and OS/2, GNUHELP may be defined
to be the pathname of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT$HELP should be defined as the name
of the help library for ‘gnuplot‘. The ‘gnuplot‘ help can be put
inside any system help library, allowing access to help from both
within and outside ‘gnuplot‘ if desired.

On Unix, HOME is used as the name of a directory to search for a
.gnuplot file if none is found in the current directory. On AmigaOS,
AtariTOS, MS-DOS and OS/2, gnuplot is used. On VMS, SYS$LOGIN: is
used. See ‘help start-up‘.

On Unix, PAGER is used as an output filter for help messages.

On Unix, AtariTOS and AmigaOS, SHELL is used for the
shell
command.

On MS-DOS and OS/2, COMSPEC is used for the
shell
command.

On MS-DOS, if the BGI or Watcom interface is used, PCTRM is used to
tell the maximum resolution supported by your monitor by setting it to
S<max. horizontal resolution>. E.g. if your monitor’s maximum
resolution is 800x600, then use:

set PCTRM=S800

If PCTRM is not set, standard VGA is used.

FIT_SCRIPT may be used to specify a ‘gnuplot‘ command to be executed
when a fit is interrupted--see ‘fit‘. FIT_LOG specifies the filename
of the logfile maintained by fit.

gnuplot 13 / 236

1.12 gnuplot.guide/Expressions

Expressions
===========

In general, any mathematical expression accepted by C, FORTRAN,
Pascal, or BASIC is valid. The precedence of these operators is
determined by the specifications of the C programming language. White
space (spaces and tabs) is ignored inside expressions.

Complex constants are expressed as {<real>,<imag>}, where <real> and
<imag> must be numerical constants. For example, {3,2} represents 3 +
2i; {0,1} represents ’i’ itself. The curly braces are explicitly
required here.

Note that gnuplot uses both "real" and "integer" arithmetic, like
FORTRAN and C. Integers are entered as "1", "-10", etc; reals as
"1.0", "-10.0", "1e1", 3.5e-1, etc. The most important difference
between the two forms is in division: division of integers truncates:
5/2 = 2; division of reals does not: 5.0/2.0 = 2.5. In mixed
expressions, integers are "promoted" to reals before evaluation: 5/2e0
= 2.5. The result of division of a negative integer by a positive one
may vary among compilers. Try a test like "print -5/2" to determine if
your system chooses -2 or -3 as the answer.

The integer expression "1/0" may be used to generate an "undefined"
flag, which causes a point to ignored; the ‘ternary‘ operator gives an
example.

The real and imaginary parts of complex expressions are always real,
whatever the form in which they are entered: in {3,2} the "3" and "2"
are reals, not integers.

Functions

Operators

User-defined

1.13 gnuplot.guide/Functions

Functions

The functions in ‘gnuplot‘ are the same as the corresponding
functions in the Unix math library, except that all functions accept
integer, real, and complex arguments, unless otherwise noted.

gnuplot 14 / 236

For those functions that accept or return angles that may be given
in either degrees or radians (sin(x), cos(x), tan(x), asin(x), acos(x),
atan(x), atan2(x) and arg(z)), the unit may be selected by

angles
,

which defaults to radians.

abs

acos

acosh

arg

asin

asinh

atan

atan2

atanh

besj0

besj1

besy0

besy1

ceil

cos

cosh

erf

erfc

exp

floor

gamma

ibeta

inverf

igamma

gnuplot 15 / 236

imag

invnorm

int

lgamma

log

log10

norm

rand

real

sgn

sin

sinh

sqrt

tan

tanh

column

tm_hour

tm_mday

tm_min

tm_mon

tm_sec

tm_wday

tm_yday

tm_year

valid

1.14 gnuplot.guide/abs

gnuplot 16 / 236

abs
...

The ‘abs(x)‘ function returns the absolute value of its argument.
The returned value is of the same type as the argument.

For complex arguments, abs(x) is defined as the length of x in the
complex plane [i.e., sqrt(real(x)**2 + imag(x)**2)].

1.15 gnuplot.guide/acos

acos
....

The ‘acos(x)‘ function returns the arc cosine (inverse cosine) of its
argument. ‘acos‘ returns its argument in radians or degrees, as
selected by

angles
.

1.16 gnuplot.guide/acosh

acosh
.....

The ‘acosh(x)‘ function returns the inverse hyperbolic cosine of its
argument in radians.

1.17 gnuplot.guide/arg

arg
...

The ‘arg(x)‘ function returns the phase of a complex number in
radians or degrees, as selected by

angles
.

1.18 gnuplot.guide/asin

gnuplot 17 / 236

asin
....

The ‘asin(x)‘ function returns the arc sin (inverse sin) of its
argument. ‘asin‘ returns its argument in radians or degrees, as
selected by

angles
.

1.19 gnuplot.guide/asinh

asinh
.....

The ‘asinh(x)‘ function returns the inverse hyperbolic sin of its
argument in radians.

1.20 gnuplot.guide/atan

atan
....

The ‘atan(x)‘ function returns the arc tangent (inverse tangent) of
its argument. ‘atan‘ returns its argument in radians or degrees, as
selected by

angles
.

1.21 gnuplot.guide/atan2

atan2
.....

The ‘atan2(y,x)‘ function returns the arc tangent (inverse tangent)
of the ratio of the real parts of its arguments.

atan2
returns its

argument in radians or degrees, as selected by
angles
, in the correct

quadrant.

gnuplot 18 / 236

1.22 gnuplot.guide/atanh

atanh
.....

The ‘atanh(x)‘ function returns the inverse hyperbolic tangent of its
argument in radians.

1.23 gnuplot.guide/besj0

besj0
.....

The ‘besj0(x)‘ function returns the j0th Bessel function of its
argument.

besj0
expects its argument to be in radians.

1.24 gnuplot.guide/besj1

besj1
.....

The ‘besj1(x)‘ function returns the j1st Bessel function of its
argument.

besj1
expects its argument to be in radians.

1.25 gnuplot.guide/besy0

besy0
.....

The
besy0
function returns the y0th Bessel function of its argument.

besy0
expects its argument to be in radians.

gnuplot 19 / 236

1.26 gnuplot.guide/besy1

besy1
.....

The ‘besy1(x)‘ function returns the y1st Bessel function of its
argument.

besy1
expects its argument to be in radians.

1.27 gnuplot.guide/ceil

ceil
....

The ‘ceil(x)‘ function returns the smallest integer that is not less
than its argument. For complex numbers,

ceil
returns the smallest

integer not less than the real part of its argument.

1.28 gnuplot.guide/cos

cos
...

The ‘cos(x)‘ function returns the cosine of its argument. ‘cos‘
accepts its argument in radians or degrees, as selected by

angles
.

1.29 gnuplot.guide/cosh

cosh
....

The ‘cosh(x)‘ function returns the hyperbolic cosine of its
argument.

cosh
expects its argument to be in radians.

gnuplot 20 / 236

1.30 gnuplot.guide/erf

erf
...

The ‘erf(x)‘ function returns the error function of the real part of
its argument. If the argument is a complex value, the imaginary
component is ignored.

1.31 gnuplot.guide/erfc

erfc
....

The ‘erfc(x)‘ function returns 1.0 - the error function of the real
part of its argument. If the argument is a complex value, the
imaginary component is ignored.

1.32 gnuplot.guide/exp

exp
...

The ‘exp(x)‘ function returns the exponential function of its
argument (‘e‘ raised to the power of its argument). On some
implementations (notably suns), exp(-x) returns undefined for very
large x. A user-defined function like safe(x) = x<-100 ? 0 : exp(x)
might prove useful in these cases.

1.33 gnuplot.guide/floor

floor
.....

The ‘floor(x)‘ function returns the largest integer not greater than
its argument. For complex numbers,

floor
returns the largest integer

not greater than the real part of its argument.

gnuplot 21 / 236

1.34 gnuplot.guide/gamma

gamma
.....

The ‘gamma(x)‘ function returns the gamma function of the real part
of its argument. For integer n, gamma(n+1) = n!. If the argument is a
complex value, the imaginary component is ignored.

1.35 gnuplot.guide/ibeta

ibeta
.....

The ‘ibeta(p,q,x)‘ function returns the incomplete beta function of
the real parts of its arguments. p, q > 0 and x in [0:1]. If the
arguments are complex, the imaginary components are ignored.

1.36 gnuplot.guide/inverf

inverf
......

The ‘inverf(x)‘ function returns the inverse error function of the
real part of its argument.

1.37 gnuplot.guide/igamma

igamma
......

The ‘igamma(a,x)‘ function returns the incomplete gamma function of
the real parts of its arguments. a > 0 and x >= 0. If the arguments
are complex, the imaginary components are ignored.

1.38 gnuplot.guide/imag

imag
....

The ‘imag(x)‘ function returns the imaginary part of its argument as
a real number.

gnuplot 22 / 236

1.39 gnuplot.guide/invnorm

invnorm
.......

The ‘invnorm(x)‘ function returns the inverse normal distribution
function of the real part of its argument.

1.40 gnuplot.guide/int

int
...

The ‘int(x)‘ function returns the integer part of its argument,
truncated toward zero.

1.41 gnuplot.guide/lgamma

lgamma
......

The ‘lgamma(x)‘ function returns the natural logarithm of the gamma
function of the real part of its argument. If the argument is a
complex value, the imaginary component is ignored.

1.42 gnuplot.guide/log

log
...

The ‘log(x)‘ function returns the natural logarithm (base ‘e‘) of its
argument.

1.43 gnuplot.guide/log10

log10
.....

The ‘log10(x)‘ function returns the logarithm (base 10) of its
argument.

gnuplot 23 / 236

1.44 gnuplot.guide/norm

norm
....

The ‘norm(x)‘ function returns the normal distribution function (or
Gaussian) of the real part of its argument.

1.45 gnuplot.guide/rand

rand
....

The ‘rand(x)‘ function returns a pseudo random number in the
interval [0:1] using the real part of its argument as a seed. If seed
< 0, the sequence is (re)initialized. If the argument is a complex
value, the imaginary component is ignored.

1.46 gnuplot.guide/real

real
....

The ‘real(x)‘ function returns the real part of its argument.

1.47 gnuplot.guide/sgn

sgn
...

The ‘sgn(x)‘ function returns 1 if its argument is positive, -1 if
its argument is negative, and 0 if its argument is 0. If the argument
is a complex value, the imaginary component is ignored.

1.48 gnuplot.guide/sin

sin
...

The ‘sin(x)‘ function returns the sine of its argument. ‘sin‘
expects its argument to be in radians or degrees, as selected by

angles

gnuplot 24 / 236

.

1.49 gnuplot.guide/sinh

sinh
....

The ‘sinh(x)‘ function returns the hyperbolic sine of its argument.
sinh
expects its argument to be in radians.

1.50 gnuplot.guide/sqrt

sqrt
....

The ‘sqrt(x)‘ function returns the square root of its argument.

1.51 gnuplot.guide/tan

tan
...

The ‘tan(x)‘ function returns the tangent of its argument. ‘tan‘
expects its argument to be in radians or degrees, as selected by

angles
.

1.52 gnuplot.guide/tanh

tanh
....

The ‘tanh(x)‘ function returns the hyperbolic tangent of its
argument.

tanh
expects its argument to be in radians.

A few additional functions are also available.

gnuplot 25 / 236

1.53 gnuplot.guide/column

column
......

‘column(x)‘ may be used only in expressions as part of
using
manipulations to fits or datafile plots. See
using
.

1.54 gnuplot.guide/tm_hour

tm_hour
.......

The
tm_hour
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the hour (an integer in the range 0-23) as
a real.

1.55 gnuplot.guide/tm_mday

tm_mday
.......

The
tm_mday
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the day of the month (an integer in the
range 1-31) as a real.

1.56 gnuplot.guide/tm_min

tm_min
......

gnuplot 26 / 236

The
tm_min
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the minute (an integer in the range 0-59)
as a real.

1.57 gnuplot.guide/tm_mon

tm_mon
......

The
tm_mon
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the month (an integer in the range 1-12)
as a real.

1.58 gnuplot.guide/tm_sec

tm_sec
......

The
tm_sec
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the second (an integer in the range 0-59)
as a real.

1.59 gnuplot.guide/tm_wday

tm_wday
.......

The
tm_wday
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the day of the week (an integer in the
range 1-7) as a real.

gnuplot 27 / 236

1.60 gnuplot.guide/tm_yday

tm_yday
.......

The
tm_yday
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the day of the year (an integer in the
range 1-366) as a real.

1.61 gnuplot.guide/tm_year

tm_year
.......

The
tm_year
function interprets its argument as a time, in seconds

from 1 Jan 2000. It returns the year (an integer) as a real.

1.62 gnuplot.guide/valid

valid
.....

‘valid(x)‘ may be used only in expressions as part of
using
manipulations to fits or datafile plots. See
using
.

Use of functions and complex variables for airfoils (http://www.gnuplot.vt.edu ←↩
/gnuplot/gpdocs/airfoil.html)

1.63 gnuplot.guide/Operators

Operators

The operators in ‘gnuplot‘ are the same as the corresponding
operators in the C programming language, except that all operators
accept integer, real, and complex arguments, unless otherwise noted.

gnuplot 28 / 236

The ** operator (exponentiation) is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

Unary

Binary

Ternary

1.64 gnuplot.guide/Unary

Unary
.....

The following is a list of all the unary operators and their usages:

Symbol Example Explanation
- -a unary minus
+ +a unary plus (no-operation)
~ ~a * one’s complement
! !a * logical negation
! a! * factorial
$ $3 * call arg/column during

using
manipulation

(*) Starred explanations indicate that the operator requires an
integer argument.

Operator precedence is the same as in Fortran and C. As in those
languages, parentheses may be used to change the order of operation.
Thus -2**2 = -4, but (-2)**2 = 4.

The factorial operator returns a real number to allow a greater
range.

1.65 gnuplot.guide/Binary

Binary
......

The following is a list of all the binary operators and their usages:

Symbol Example Explanation

** a**b exponentiation

* a*b multiplication

gnuplot 29 / 236

/ a/b division
% a%b * modulo
+ a+b addition
- a-b subtraction
== a==b equality
!= a!=b inequality
< a<b less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
& a&b * bitwise AND
^ a^b * bitwise exclusive OR
| a|b * bitwise inclusive OR
&& a&&b * logical AND
|| a||b * logical OR

(*) Starred explanations indicate that the operator requires integer
arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C.
That is, the second ‘&&‘ operand is not evaluated if the first is
false; the second ‘||‘ operand is not evaluated if the first is true.

1.66 gnuplot.guide/Ternary

Ternary
.......

There is a single ternary operator:

Symbol Example Explanation
?: a?b:c ternary operation

The ternary operator behaves as it does in C. The first argument
(a), which must be an integer, is evaluated. If it is true (non-zero),
the second argument (b) is evaluated and returned; otherwise the third
argument (c) is evaluated and returned.

The ternary operator is very useful both in constructing piecewise
functions and in plotting points only when certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <= x < 1, 1/x for 1 <=
x < 2, and undefined elsewhere:

f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 ? 1/x : 1/0
plot f(x)

Note that ‘gnuplot‘ quietly ignores undefined values, so the final
branch of the function (1/0) will produce no plottable points. Note
also that f(x) will be plotted as a continuous function across the
discontinuity if a line style is used. To plot it discontinuously,
create separate functions for the two pieces. (Parametric functions
are also useful for this purpose.)

gnuplot 30 / 236

For data in a file, plot the average of the data in columns 2 and 3
against the datum in column 1, but only if the datum in column 4 is
non-negative:

plot ’file’ using 1:($4<0 ? 1/0 : ($2+$3)/2)

Please see
using
for an explanation of the

using
syntax.

1.67 gnuplot.guide/User-defined

User-defined

New user-defined variables and functions of one through five
variables may be declared and used anywhere, including on the

plot
command itself.

User-defined function syntax:
<func-name>(<dummy1> {,<dummy2>} ... {,<dummy5>}) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy5>.

User-defined variable syntax:
<variable-name> = <constant-expression>

Examples:
w = 2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (t > 0) ? t : 0
min(a,b) = (a < b) ? a : b
comb(n,k) = n!/(k!*(n-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)

Note that the variable ‘pi‘ is already defined. But it is in no way
magic; you may redefine it to be whatever you like.

Valid names are the same as in most programming languages: they must
begin with a letter, but subsequent characters may be letters, digits,
"$", or "_". Note, however, that the ‘fit‘ mechanism uses several
variables with names that begin "FIT_". It is safest to avoid using
such names. "FIT_LIMIT", however, is one that you may wish to
redefine. See the documentation on ‘fit‘ for details.

gnuplot 31 / 236

See
functions
,
variables
, and ‘fit‘.

1.68 gnuplot.guide/Glossary

Glossary
========

Throughout this document an attempt has been made to maintain
consistency of nomenclature. This cannot be wholly successful because
as ‘gnuplot‘ has evolved over time, certain command and keyword names
have been adopted that preclude such perfection. This section contains
explanations of the way some of these terms are used.

A "page" or "screen" is the entire area addressable by ‘gnuplot‘.
On a monitor, it is the full screen; on a plotter, it is a single sheet
of paper.

A screen may contain one or more "plots". A plot is defined by an
abscissa and an ordinate, although these need not actually appear on
it, as well as the margins and any text written therein.

A plot contains one "graph". A graph is defined by an abscissa and
an ordinate, although these need not actually appear on it.

A graph may contain one or more "lines". A line is a single
function or data set. "Line" is also a plotting style. The word will
also be used in sense "a line of text". Presumably the context will
remove any ambiguity.

The lines on a graph may have individual names. These may be listed
together with a sample of the plotting style used to represent them in
the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in ‘gnuplot‘. In this
document, it will always be preceded by the adjective "plot", "line", or
"key" to differentiate among them.

A graph may have up to four labelled axes. Various commands have
the name of an axis built into their names, such as

xlabel
. Other

commands have one or more axis names as options, such as ‘set logscale
xy‘. The names of the four axes for these usages are "x" for the axis
along the bottom border of the plot, "y" for the left border, "x2" for
the top border, and "y2" for the right border. "z" also occurs in
commands used with 3-d plotting.

When discussing data files, the term "record" will be resurrected
and used to denote a single line of text in the file, that is, the

gnuplot 32 / 236

characters between newline or end-of-record characters. A "point" is
the datum extracted from a single record. A "datablock" is a set of
points from consecutive records, delimited by blank records. A line,
when referred to in the context of a data file, is a subset of a
datablock.

1.69 gnuplot.guide/Plotting

Plotting
========

There are three ‘gnuplot‘ commands which actually create a plot:

plot
, ‘splot‘ and
replot
.
plot
generates 2-d plots, ‘splot‘

generates 3-d plots (actually 2-d projections, of course), and
replot
appends its arguments to the previous
plot
or ‘splot‘ and executes the

modified command.

Much of the general information about plotting can be found in the
discussion of

plot
; information specific to 3-d can be found in the

‘splot‘ section.

plot
operates in either rectangular or polar coordinates - see ‘set

polar‘ for details of the latter. ‘splot‘ operates only in rectangular
coordinates, but the

mapping
command allows for a few other coordinate

systems to be treated. In addition, the
using
option allows both

plot
and ‘splot‘ to treat almost any coordinate system you’d care to

define.

‘splot‘ can plot surfaces and contours in addition to points and/or
lines. In addition to ‘splot‘, see

isosamples
for information about

defining the grid for a 3-d function; ‘splot datafile‘ for information
about the requisite file structure for 3-d data values; and

gnuplot 33 / 236

contour
and
cntrparam
for information about contours.

1.70 gnuplot.guide/Start-up

Start-up
========

When ‘gnuplot‘ is run, it looks for an initialization file to load.
This file is called ‘.gnuplot‘ on Unix and AmigaOS systems, and
‘GNUPLOT.INI‘ on other systems. If this file is not found in the
current directory, the program will look for it in the home directory
(under AmigaOS, Atari(single)TOS, MS-DOS and OS/2, the environment
variable ‘gnuplot‘ should contain the name of this directory). Note:
if NOCWDRC is defined during the installation, ‘gnuplot‘ will not read
from the current directory.

If the initialization file is found, ‘gnuplot‘ executes the commands
in it. These may be any legal ‘gnuplot‘ commands, but typically they
are limited to setting the terminal and defining frequently-used
functions or variables.

1.71 gnuplot.guide/Substitution

Substitution
============

Command-line substitution is specified by a system command enclosed
in backquotes. This command is spawned and the output it produces
replaces the name of the command (and backquotes) on the command line.
Some implementations also support pipes; see

special-filenames
.

Newlines in the output produced by the spawned command are replaced
with blanks.

Command-line substitution can be used anywhere on the ‘gnuplot‘
command line.

Example:

This will run the program ‘leastsq‘ and replace ‘leastsq‘ (including
backquotes) on the command line with its output:

f(x) = ‘leastsq‘

or, in VMS

gnuplot 34 / 236

f(x) = ‘run leastsq‘

1.72 gnuplot.guide/Syntax

Syntax
======

The general rules of syntax and punctuation in ‘gnuplot‘ are that
keywords and options are order-dependent. Options and any accompanying
parameters are separated by spaces whereas lists and coordinates are
separated by commas. Ranges are separated by colons and enclosed in
brackets [], text and file names are enclosed in quotes, and a few
miscellaneous things are enclosed in parentheses. Braces {} are used
for a few special purposes.

Commas are used to separate coordinates on the ‘set‘ commands
arrow
,

key
, and
label
; the list of variables being fitted (the list after

the ‘via‘ keyword on the ‘fit‘ command); lists of discrete contours or
the loop parameters which specify them on the

cntrparam
command; the

arguments of the ‘set‘ commands
dgrid3d
,
dummy
,
isosamples
,

offsets
,
origin
,
samples
,
size
, ‘time‘, and
view
; lists of tics

or the loop parameters which specify them; the offsets for titles and
axis labels; parametric functions to be used to calculate the x, y, and
z coordinates on the

plot
,
replot
and ‘splot‘ commands; and the

complete sets of keywords specifying individual plots (data sets or

gnuplot 35 / 236

functions) on the
plot
,
replot
and ‘splot‘ commands.

Parentheses are used to delimit sets of explicit tics (as opposed to
loop parameters) and to indicate computations in the

using
filter of

the ‘fit‘,
plot
,
replot
and ‘splot‘ commands.

(Parentheses and commas are also used as usual in function notation.)

Brackets are used to delimit ranges, whether they are given on
‘set‘,

plot
or ‘splot‘ commands.

Colons are used to separate extrema in ‘range‘ specifications
(whether they are given on ‘set‘,

plot
or ‘splot‘ commands) and to

separate entries in the
using
filter of the

plot
,
replot
, ‘splot‘

and ‘fit‘ commands.

Semicolons are used to separate commands given on a single command
line.

Braces are used in text to be specially processed by some terminals,
like ‘postscript‘. They are also used to denote complex numbers: {3,2}
= 3 + 2i.

Text may be enclosed in single- or double-quotes. Backslash
processing of sequences like \n (newline) and \345 (octal character
code) is performed for double-quoted strings, but not for single-quoted
strings.

The justification is the same for each line of a multi-line string.
Thus the center-justified string

"This is the first line of text.\nThis is the second line."

will produce
This is the first line of text.

This is the second line.

but

gnuplot 36 / 236

’This is the first line of text.\nThis is the second line.’

will produce
This is the first line of text.\nThis is the second line.

Filenames may be entered with either single- or double-quotes. In
this manual the command examples generally single-quote filenames and
double-quote other string tokens for clarity.

At present you should not embed \n inside {} when using the
enhanced option of the postscript terminal.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline
to be specified by \\ in a single-quoted string or \\\\ in a
double-quoted string.

Back-quotes are used to enclose system commands for substitution.

1.73 gnuplot.guide/Time-Date_data

Time/Date data
==============

‘gnuplot‘ supports the use of time and/or date information as input
data. This feature is activated by the commands ‘set xdata time‘, ‘set
ydata time‘, etc.

Internally all times and dates are converted to the number of
seconds from the year 2000. The command

timefmt
defines the format

for all inputs: data files, ranges, tics, label positions--in short,
anything that accepts a data value must receive it in this format.
Since only one input format can be in force at a given time, all
time/date quantities being input at the same time must be presented in
the same format. Thus if both x and y data in a file are time/date,
they must be in the same format.

The conversion to and from seconds assumes Universal Time (which is
the same as Greenwich Standard Time). There is no provision for
changing the time zone or for daylight savings. If all your data refer
to the same time zone (and are all either daylight or standard) you
don’t need to worry about these things. But if the absolute time is
crucial for your application, you’ll need to convert to UT yourself.

Commands like
xrange
will re-interpret the integer according to

timefmt
. If you change
timefmt
, and then ‘show‘ the quantity again,

gnuplot 37 / 236

it will be displayed in the new
timefmt
. For that matter, if you give

the deactivation command (like
xdata
), the quantity will be shown in

its numerical form.

The command ‘set format‘ defines the format that will be used for
tic labels, whether or not the specified axis is time/date.

If time/date information is to be plotted from a file, the
using
option _must_ be used on the
plot
or ‘splot‘ command. These commands

simply use white space to separate columns, but white space may be
embedded within the time/date string. If you use tabs as a separator,
some trial-and-error may be necessary to discover how your system
treats them.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like

03/21/95 10:00 6.02e23

This file can be plotted by

set xdata time
set timefmt "%m/%d/%y"
set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"
set timefmt "%m/%d/%y %H:%M"
plot "data" using 1:3

which will produce xtic labels that look like "03/21".

See the descriptions of each command for more details.

1.74 gnuplot.guide/Commands

Commands

This section lists the commands acceptable to ‘gnuplot‘ in
alphabetical order. Printed versions of this document contain all
commands; on-line versions may not be complete. Indeed, on some
systems there may be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names
and their options are permissible, i.e., "‘p f(x) w l‘" instead of
"‘plot f(x) with lines‘".

gnuplot 38 / 236

In the syntax descriptions, braces ({}) denote optional arguments
and a vertical bar (|) separates mutually exclusive choices.

cd

call

clear

exit

fit

help

if

load

pause

plot

print

pwd

quit

replot

reread

reset

save

set-show

shell

splot

test

update

1.75 gnuplot.guide/cd

cd
==

gnuplot 39 / 236

The
cd
command changes the working directory.

Syntax:
cd ’<directory-name>’

The directory name must be enclosed in quotes.

Examples:
cd ’subdir’
cd ".."

DOS users _must_ use single-quotes--backslash [\] has special
significance inside double-quotes. For example,

cd "c:\newdata"

fails, but
cd ’c:\newdata’

works as expected.

1.76 gnuplot.guide/call

call
====

The
call
command is identical to the load command with one

exception: you can have up to ten additional parameters to the command
(delimited according to the standard parser rules) which can be
substituted into the lines read from the file. As each line is read
from the

call
ed input file, it is scanned for the sequence ‘$‘

(dollar-sign) followed by a digit (0-9). If found, the sequence is
replaced by the corresponding parameter from the

call
command line.

If the parameter was specified as a string in the
call
line, it is

substituted without its enclosing quotes. ‘$‘ followed by any
character other than a digit will be that character. E.g. use ‘$$‘ to
get a single ‘$‘. Providing more than ten parameters on the

call
command line will cause an error. A parameter that was not ←↩

provided
substitutes as nothing. Files being

call
ed may themselves contain

gnuplot 40 / 236

call
or

load
commands.

The
call
command _must_ be the last command on a multi-command line.

Syntax:
call "<input-file>" <parameter-0> <parm-1> ... <parm-9>

The name of the input file must be enclosed in quotes, and it is
recommended that parameters are similarly enclosed in quotes (future
versions of gnuplot may treat quoted and unquoted arguments
differently).

Example:

If the file ’calltest.gp’ contains the line:
print "p0=$0 p1=$1 p2=$2 p3=$3 p4=$4 p5=$5 p6=$6 p7=x$7x"

entering the command:
call ’calltest.gp’ "abcd" 1.2 + "’quoted’" -- "$2"

will display:
p0=abcd p1=1.2 p2=+ p3=’quoted’ p4=- p5=- p6=$2 p7=xx

NOTE: there is a clash in syntax with the datafile
using
callback

operator. Use ‘$$n‘ or ‘column(n)‘ to access column n from a datafile
inside a

call
ed datafile plot.

1.77 gnuplot.guide/clear

clear
=====

The
clear
command erases the current screen or output device as

specified by
output
. This usually generates a formfeed on hardcopy

devices. Use
terminal
to set the device type.

For some terminals

gnuplot 41 / 236

clear
erases only the portion of the plotting

surface defined by
size
, so for these it can be used in conjunction

with
multiplot
to create an inset.

Example:
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
set nomultiplot

Please see
multiplot
,
size
, and
origin
for details of these

commands.

1.78 gnuplot.guide/exit

exit
====

The commands
exit
and

quit
and the END-OF-FILE character will exit

the current ‘gnuplot‘ command file and
load
the next one. See "help

batch/interactive" for more details.

Each of these commands will clear the output device (as does the
clear
command) before exiting.

1.79 gnuplot.guide/fit

gnuplot 42 / 236

fit
===

The ‘fit‘ command can fit a user-defined function to a set of data
points (x,y) or (x,y,z), using an implementation of the nonlinear
least-squares (NLLS) Marquardt-Levenberg algorithm. Any user-defined
variable occurring in the function body may serve as a fit parameter,
but the return type of the function must be real.

Syntax:
fit {[xrange] {[yrange]}} <function> ’<datafile>’

{datafile-modifiers}
via ’<parameter file>’ | <var1>{,<var2>,...}

Ranges may be specified to temporarily limit the data which is to be
fitted; any out-of-range data points are ignored. The syntax is

[{dummy_variable=}{<min>}{:<max>}],

analogous to
plot
; see
ranges
.

<function> is any valid ‘gnuplot‘ expression, although it is usual
to use a previously user-defined function of the form f(x) or f(x,y).

<datafile> is treated as in the
plot
command. All the ‘plot

datafile‘ modifiers (
using
,
every
,...) except
smooth
are applicable

to ‘fit‘. See ‘plot datafile‘.

The default data formats for fitting functions with a single
independent variable, y=f(x), are {x:}y or x:y:s; those formats can be
changed with the datafile

using
qualifier. The third item, (a column

number or an expression), if present, is interpreted as the standard
deviation of the corresponding y value and is used to compute a weight
for the datum, 1/s**2. Otherwise, all data points are weighted
equally, with a weight of one.

To fit a function with two independent variables, z=f(x,y), the
required format is

using
with four items, x:y:z:s. The complete

format must be given--no default columns are assumed for a missing
token. Weights for each data point are evaluated from ’s’ as above.
If error estimates are not available, a constant value can be specified

gnuplot 43 / 236

as a constant expression (see
using
), e.g., ‘using 1:2:3:(1)‘.

Multiple datasets may be simultaneously fit with functions of one
independent variable by making y a ’pseudo-variable’, e.g., the dataline
number, and fitting as two independent variables. See ‘fit
multibranch‘.

The ‘via‘ qualifier specifies which parameters are to be adjusted,
either directly, or by referencing a parameter file.

Examples:
f(x) = a*x**2 + b*x + c
g(x,y) = a*x**2 + b*y**2 + c*x*y
FIT_LIMIT = 1e-6
fit f(x) ’measured.dat’ via ’start.par’
fit f(x) ’measured.dat’ using 3:($7-5) via ’start.par’
fit f(x) ’./data/trash.dat’ using 1:2:3 via a, b, c
fit g(x,y) ’surface.dat’ using 1:2:3:(1) via a, b, c

After each iteration step, detailed information about the current
state of the fit is written to the display. The same information about
the initial and final states is written to a log file, "fit.log". This
file is always appended to, so as to not lose any previous fit history;
it should be deleted or renamed as desired.

The fit may be interrupted by pressing Ctrl-C (any key but Ctrl-C
under MSDOS and Atari Multitasking Systems). After the current
iteration completes, you have the option to (1) stop the fit and accept
the current parameter values, (2) continue the fit, (3) execute a
‘gnuplot‘ command as specified by the environment variable FIT_SCRIPT.
The default for FIT_SCRIPT is

replot
, so if you had previously plotted

both the data and the fitting function in one graph, you can display
the current state of the fit.

Once ‘fit‘ has finished, the
update
command may be used to store

final values in a file for subsequent use as a parameter file. See
update
for details.

adjustable_parameters

beginner’s_guide

error_estimates

fit_controlling

multi-branch

gnuplot 44 / 236

starting_values

tips

1.80 gnuplot.guide/adjustable_parameters

adjustable parameters

There are two ways that ‘via‘ can specify the parameters to be
adjusted, either directly on the command line or indirectly, by
referencing a parameter file. The two use different means to set
initial values.

Adjustable parameters can be specified by a comma-separated list of
variable names after the ‘via‘ keyword. Any variable that is not
already defined is is created with an initial value of 1.0. However,
the fit is more likely to converge rapidly if the variables have been
previously declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding
initial value are specified, one per line, in the form

varname = value

Comments, marked by ’#’, and blank lines are permissible. The
special form

varname = value # FIXED

means that the variable is treated as a ’fixed parameter’,
initialized by the parameter file, but not adjusted by ‘fit‘. For
clarity, it may be useful to designate variables as fixed parameters so
that their values are reported by ‘fit‘. The keyword ‘# FIXED‘ has to
appear in exactly this form.

1.81 gnuplot.guide/beginner’s_guide

beginner’s guide

‘fit‘ is used to find a set of parameters that ’best’ fits your data
to your user-defined function. The fit is judged on the basis of the
the sum of the squared differences or ’residuals’ (SSR) between the
input data points and the function values, evaluated at the same
places. This quantity is often called ’chisquare’ (i.e., the Greek
letter chi, to the power of 2). The algorithm attempts to minimize
SSR, or more precisely, WSSR, as the residuals are ’weighted’ by the
input data errors (or 1.0) before being squared; see ‘fit
error_estimates‘ for details.

That’s why it is called ’least-squares fitting’. Let’s look at an

gnuplot 45 / 236

example to see what is meant by ’non-linear’, but first we had better
go over some terms. Here it is convenient to use z as the dependent
variable for user-defined functions of either one independent variable,
z=f(x), or two independent variables, z=f(x,y). A parameter is a
user-defined variable that ‘fit‘ will adjust, i.e., an unknown quantity
in the function declaration. Linearity/non-linearity refers to the
relationship of the dependent variable, z, to the parameters which
‘fit‘ is adjusting, not of z to the independent variables, x and/or y.
(To be technical, the second {and higher} derivatives of the fitting
function with respect to the parameters are zero for a linear
least-squares problem).

For linear least-squares (LLS), the user-defined function will be a
sum of simple functions, not involving any parameters, each multiplied
by one parameter. NLLS handles more complicated functions in which
parameters can be used in a large number of ways. An example that
illustrates the difference between linear and nonlinear least-squares
is the Fourier series. One member may be written as

z=a*sin(c*x) + b*cos(c*x).

If a and b are the unknown parameters and c is constant, then
estimating values of the parameters is a linear least-squares problem.
However, if c is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by
comparatively simple linear algebra, in one direct step. However LLS
is a special case which is also solved along with more general NLLS
problems by the iterative procedure that ‘gnuplot‘ uses. ‘fit‘
attempts to find the minimum by doing a search. Each step (iteration)
calculates WSSR with a new set of parameter values. The
Marquardt-Levenberg algorithm selects the parameter values for the next
iteration. The process continues until a preset criterium is met,
either (1) the fit has "converged" (the relative change in WSSR is less
than FIT_LIMIT), or (2) it reaches a preset iteration count limit,
FIT_MAXITER (see

variables
). The fit may also be interrupted and

subsequently halted from the keyboard (see ‘fit‘).

Often the function to be fitted will be based on a model (or theory)
that attempts to describe or predict the behaviour of the data. Then
‘fit‘ can be used to find values for the free parameters of the model,
to determine how well the data fits the model, and to estimate an error
range for each parameter. See ‘fit error_estimates‘.

Alternatively, in curve-fitting, functions are selected independent
of a model (on the basis of experience as to which are likely to
describe the trend of the data with the desired resolution and a
minimum number of parameters*functions.) The ‘fit‘ solution then
provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data
points, the

smooth
option to

plot
may be what you’ve been looking for

gnuplot 46 / 236

rather than ‘fit‘.

1.82 gnuplot.guide/error_estimates

error estimates

In ‘fit‘, the term "error" is used in two different contexts, data
error estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of
each data point when determining the weighted sum of squared residuals,
WSSR or chisquare. They can affect the parameter estimates, since they
determine how much influence the deviation of each data point from the
fitted function has on the final values. Some of the ‘fit‘ output
information, including the parameter error estimates, is more
meaningful if accurate data error estimates have been provided.

The ’statistical overview’ describes some of the ‘fit‘ output and
gives some background for the ’practical guidelines’.

statistical_overview

practical_guidelines

1.83 gnuplot.guide/statistical_overview

statistical overview
....................

The theory of non-linear least-squares (NLLS) is generally described
in terms of a normal distribution of errors, that is, the input data is
assumed to be a sample from a population having a given mean and a
Gaussian (normal) distribution about the mean with a given standard
deviation. For a sample of sufficiently large size, and knowing the
population standard deviation, one can use the statistics of the
chisquare distribution to describe a "goodness of fit" by looking at
the variable often called "chisquare". Here, it is sufficient to say
that a reduced chisquare (chisquare/degrees of freedom, where degrees
of freedom is the number of datapoints less the number of parameters
being fitted) of 1.0 is an indication that the weighted sum of squared
deviations between the fitted function and the data points is the same
as that expected for a random sample from a population characterized by
the function with the current value of the parameters and the given
standard deviations.

If the standard deviation for the population is not constant, as in

gnuplot 47 / 236

counting statistics where variance = counts, then each point should be
individually weighted when comparing the observed sum of deviations and
the expected sum of deviations.

At the conclusion ‘fit‘ reports ’stdfit’, the standard deviation of
the fit, which is the rms of the residuals, and the variance of the
residuals, also called ’reduced chisquare’ when the data points are
weighted. The number of degrees of freedom (the number of data points
minus the number of fitted parameters) is used in these estimates
because the parameters used in calculating the residuals of the
datapoints were obtained from the same data.

To estimate confidence levels for the parameters, one can use the
minimum chisquare obtained from the fit and chisquare statistics to
determine the value of chisquare corresponding to the desired
confidence level, but considerably more calculation is required to
determine the combinations of parameters which produce such values.

Rather than determine confidence intervals, ‘fit‘ reports parameter
error estimates which are readily obtained from the variance-covariance
matrix after the final iteration. By convention, these estimates are
called "standard errors" or "asymptotic standard errors", since they
are calculated in the same way as the standard errors (standard
deviation of each parameter) of a linear least-squares problem, even
though the statistical conditions for designating the quantity
calculated to be a standard deviation are not generally valid for the
NLLS problem. The asymptotic standard errors are generally
over-optimistic and should not be used for determining confidence
levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix, which gives an
indication of the correlation of parameters in the region of the
solution; if one parameter is changed, increasing chisquare, does
changing another compensate? The main diagonal elements,
autocorrelation, are all 1; if all parameters were independent, all
other elements would be nearly 0. Two variables which completely
compensate each other would have an off-diagonal element of unit
magnitude, with a sign depending on whether the relation is
proportional or inversely proportional. The smaller the magnitudes of
the off-diagonal elements, the closer the estimates of the standard
deviation of each parameter would be to the asymptotic standard error.

1.84 gnuplot.guide/practical_guidelines

practical guidelines
....................

If you have a basis for assigning weights to each data point, doing
so lets you make use of additional knowledge about your measurements,
e.g., take into account that some points may be more reliable than
others. That may affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional
‘fit‘ output after the last iteration. Even if you weight each point

gnuplot 48 / 236

equally, estimating an average standard deviation rather than using a
weight of 1 makes WSSR a dimensionless variable, as chisquare is by
definition.

Each fit iteration will display information which can be used to
evaluate the progress of the fit. (An ’*’ indicates that it did not
find a smaller WSSR and is trying again.) The ’sum of squares of
residuals’, also called ’chisquare’, is the WSSR between the data and
your fitted function; ‘fit‘ has minimized that. At this stage, with
weighted data, chisquare is expected to approach the number of degrees
of freedom (data points minus parameters). The WSSR can be used to
calculate the reduced chisquare (WSSR/ndf) or stdfit, the standard
deviation of the fit, sqrt(WSSR/ndf). Both of these are reported for
the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation
of the data from the fitted function, in user units.

If you supplied valid data errors, the number of data points is
large enough, and the model is correct, the reduced chisquare should be
about unity. (For details, look up the ’chi-squared distribution’ in
your favourite statistics reference.) If so, there are additional
tests, beyond the scope of this overview, for determining how well the
model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect
data error estimates, data errors not normally distributed, systematic
measurement errors, ’outliers’, or an incorrect model function. A plot
of the residuals, e.g., ‘plot ’datafile’ using 1:($2-f($1))‘, may help
to show any systematic trends. Plotting both the data points and the
function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less
than that expected for a random sample from the function with normally
distributed errors. The data error estimates may be too large, the
statistical assumptions may not be justified, or the model function may
be too general, fitting fluctuations in a particular sample in addition
to the underlying trends. In the latter case, a simpler function may
be more appropriate.

You’ll have to get used to both ‘fit‘ and the kind of problems you
apply it to before you can relate the standard errors to some more
practical estimates of parameter uncertainties or evaluate the
significance of the correlation matrix.

Note that ‘fit‘, in common with most NLLS implementations, minimizes
the weighted sum of squared distances (y-f(x))**2. It does not provide
any means to account for "errors" in the values of x, only in y. Also,
any "outliers" (data points outside the normal distribution of the
model) will have an exaggerated effect on the solution.

1.85 gnuplot.guide/fit_controlling

gnuplot 49 / 236

fit controlling

There are a number of ‘gnuplot‘ variables that can be defined to
affect ‘fit‘. Those which can be defined once ‘gnuplot‘ is running are
listed under ’control_variables’ while those defined before starting
‘gnuplot‘ are listed under ’environment_variables’.

control_variables

environment_variables

1.86 gnuplot.guide/control_variables

control variables
.................

The default epsilon limit (1e-5) may be changed by declaring a value
for

FIT_LIMIT

When the sum of squared residuals changes between two iteration
steps by a factor less than this number (epsilon), the fit is
considered to have ’converged’.

The maximum number of iterations may be limited by declaring a value
for

FIT_MAXITER

A value of 0 (or not defining it at all) means that there is no
limit.

If you need even more control about the algorithm, and know the
Marquardt-Levenberg algorithm well, there are some more variables to
influence it. The startup value of ‘lambda‘ is normally calculated
automatically from the ML-matrix, but if you want to, you may provide
your own one with

FIT_START_LAMBDA

Specifying FIT_START_LAMBDA as zero or less will re-enable the
automatic selection. The variable

FIT_LAMBDA_FACTOR

gives the factor by which ‘lambda‘ is increased or decreased whenever
the chi-squared target function increased or decreased significantly.
Setting FIT_LAMBDA_FACTOR to zero re-enables the default factor of 10.0.

Oher variables with the FIT_ prefix may be added to ‘fit‘, so it is
safer not to use that prefix for user-defined variables.

The variables FIT_SKIP and FIT_INDEX were used by earlier releases of
‘gnuplot‘ with a ’fit’ patch called ‘gnufit‘ and are no longer

gnuplot 50 / 236

available. The datafile
every
modifier provides the functionality of

FIT_SKIP. FIT_INDEX was used for multi-branch fitting, but
multi-branch fitting of one independent variable is now done as a
pseudo-3D fit in which the second independent variable and

using
are

used to specify the branch. See
multi-branch
.

1.87 gnuplot.guide/environment_variables

environment variables
.....................

The environment variables must be defined before ‘gnuplot‘ is
executed; how to do so depends on your operating system.

FIT_LOG

changes the name (and/or path) of the file to which the fit log will
be written from the default of "fit.log" in the working directory.

FIT_SCRIPT

specifies a command that may be executed after an user interrupt.
The default is

replot
, but a
plot
or

load
command may be useful to

display a plot customized to highlight the progress of the fit.

1.88 gnuplot.guide/multi-branch

multi-branch

In multi-branch fitting, multiple data sets can be simultaneously
fit with functions of one independent variable having common parameters
by minimizing the total WSSR. The function and parameters (branch) for
each data set are selected by using a ’pseudo-variable’, e.g., either
the dataline number (a ’column’ index of -1) or the datafile index
(-2), as the second independent variable.

gnuplot 51 / 236

Example: Given two exponential decays of the form, z=f(x), each
describing a different data set but having a common decay time,
estimate the values of the parameters. If the datafile has the format
x:z:s, then

f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau)
fit f(x,y) ’datafile’ using 1:-1:2:3 via a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the
"fit.dem" demo.

Appropriate weighting may be required since unit weights may cause
one branch to predominate if there is a difference in the scale of the
dependent variable. Fitting each branch separately, using the
multi-branch solution as initial values, may give an indication as to
the relative effect of each branch on the joint solution.

1.89 gnuplot.guide/starting_values

starting values

Nonlinear fitting is not guaranteed to converge to the global
optimum (the solution with the smallest sum of squared residuals, SSR),
and can get stuck at a local minimum. The routine has no way to
determine that; it is up to you to judge whether this has happened.

‘fit‘ may, and often will get "lost" if started far from a solution,
where SSR is large and changing slowly as the parameters are varied, or
it may reach a numerically unstable region (e.g., too large a number
causing a floating point overflow) which results in an "undefined
value" message or ‘gnuplot‘ halting.

To improve the chances of finding the global optimum, you should set
the starting values at least roughly in the vicinity of the solution,
e.g., within an order of magnitude, if possible. The closer your
starting values are to the solution, the less chance of stopping at
another minimum. One way to find starting values is to plot data and
the fitting function on the same graph and change parameter values and

replot
until reasonable similarity is reached. The same plot is also

useful to check whether the fit stopped at a minimum with a poor fit.

Of course, a reasonably good fit is not proof there is not a
"better" fit (in either a statistical sense, characterized by an
improved goodness-of-fit criterion, or a physical sense, with a
solution more consistent with the model.) Depending on the problem, it
may be desirable to ‘fit‘ with various sets of starting values,
covering a reasonable range for each parameter.

gnuplot 52 / 236

1.90 gnuplot.guide/tips

tips

Here are some tips to keep in mind to get the most out of ‘fit‘.
They’re not very organized, so you’ll have to read them several times
until their essence has sunk in.

The two forms of the ‘via‘ argument to ‘fit‘ serve two largely
distinct purposes. The ‘via "file"‘ form is best used for (possibly
unattended) batch operation, where you just supply the startup values
in a file and can later use

update
to copy the results back into

another (or the same) parameter file.

The ‘via var1, var2, ...‘ form is best used interactively, where the
command history mechanism may be used to edit the list of parameters to
be fitted or to supply new startup values for the next try. This is
particularly useful for hard problems, where a direct fit to all
parameters at once won’t work without good starting values. To find
such, you can iterate several times, fitting only some of the
parameters, until the values are close enough to the goal that the
final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the
function you are fitting. For example, don’t try to fit a*exp(x+b),
because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or
exp(x+b).

A technical issue: the parameters must not be too different in
magnitude. The larger the ratio of the largest and the smallest
absolute parameter values, the slower the fit will converge. If the
ratio is close to or above the inverse of the machine floating point
precision, it may take next to forever to converge, or refuse to
converge at all. You will have to adapt your function to avoid this,
e.g., replace ’parameter’ by ’1e9*parameter’ in the function
definition, and divide the starting value by 1e9.

If you can write your function as a linear combination of simple
functions weighted by the parameters to be fitted, by all means do so.
That helps a lot, because the problem is no longer nonlinear and should
converge with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical
experimentation courses, may have you first fit some functions to your
data, perhaps in a multi-step process of accounting for several aspects
of the underlying theory one by one, and then extract the information
you really wanted from the fitting parameters of those functions. With
‘fit‘, this may often be done in one step by writing the model function
directly in terms of the desired parameters. Transforming data can
also quite often be avoided, though sometimes at the cost of a more
difficult fit problem. If you think this contradicts the previous
paragraph about simplifying the fit function, you are correct.

gnuplot 53 / 236

A "singular matrix" message indicates that this implementation of the
Marquardt-Levenberg algorithm can’t calculate parameter values for the
next iteration. Try different starting values, writing the function in
another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package
(fudgit), that kind of summarizes all these issues: "Nonlinear fitting
is an art!"

1.91 gnuplot.guide/help

help
====

The
help
command displays on-line help. To specify information on a

particular topic use the syntax:

help {<topic>}

If <topic> is not specified, a short message is printed about
‘gnuplot‘. After help for the requested topic is given, a menu of
subtopics is given; help for a subtopic may be requested by typing its
name, extending the help request. After that subtopic has been
printed, the request may be extended again or you may go back one level
to the previous topic. Eventually, the ‘gnuplot‘ command line will
return.

If a question mark (?) is given as the topic, the list of topics
currently available is printed on the screen.

1.92 gnuplot.guide/if

if
==

The
if
command allows commands to be executed conditionally.

Syntax:
if (<condition>) <command-line>

<condition> will be evaluated. If it is true (non-zero), then the
command(s) of the <command-line> will be executed. If <condition> is
false (zero), then the entire <command-line> is ignored. Note that use
of ‘;‘ to allow multiple commands on the same line will _not_ end the

gnuplot 54 / 236

conditionalized commands.

Examples:
pi=3
if (pi!=acos(-1)) print "?Fixing pi!"; pi=acos(-1); print pi

will display:
?Fixing pi!
3.14159265358979

but
if (1==2) print "Never see this"; print "Or this either"

will not display anything.

See
reread
for an example of how

if
and

reread
can be used

together to perform a loop.

1.93 gnuplot.guide/load

load
====

The
load
command executes each line of the specified input file as

if it had been typed in interactively. Files created by the
save
command can later be
load
ed. Any text file containing valid commands

can be created and then executed by the
load
command. Files being

load
ed may themselves contain
load
or

call
commands. See ‘comment‘

for information about comments in commands. To
load
with arguments,

see
call
.

gnuplot 55 / 236

The
load
command _must_ be the last command on a multi-command line.

Syntax:
load "<input-file>"

The name of the input file must be enclosed in quotes.

The special filename "-" may be used to
load
commands from standard

input. This allows a ‘gnuplot‘ command file to accept some commands
from standard input. Please see "help batch/interactive" for more
details.

Examples:
load ’work.gnu’
load "func.dat"

The
load
command is performed implicitly on any file names given as

arguments to ‘gnuplot‘. These are loaded in the order specified, and
then ‘gnuplot‘ exits.

1.94 gnuplot.guide/pause

pause
=====

The
pause
command displays any text associated with the command and

then waits a specified amount of time or until the carriage return is
pressed.

pause
is especially useful in conjunction with

load
files.

Syntax:
pause <time> {"<string>"}

<time> may be any integer constant or expression. Choosing -1 will
wait until a carriage return is hit, zero (0) won’t pause at all, and a
positive integer will wait the specified number of seconds. ‘pause 0‘
is synonymous with

print
.

Note: Since

gnuplot 56 / 236

pause
communicates with the operating system rather

than the graphics, it may behave differently with different device
drivers (depending upon how text and graphics are mixed).

Examples:
pause -1 # Wait until a carriage return is hit
pause 3 # Wait three seconds
pause -1 "Hit return to continue"
pause 10 "Isn’t this pretty? It’s a cubic spline."

1.95 gnuplot.guide/plot

plot
====

plot
is the primary command for drawing plots with ‘gnuplot‘. It

creates plots of functions and data in many, many ways.
plot
is used

to draw 2-d functions and data; ‘splot‘ draws 2-d projections of 3-d
surfaces and data.

plot
and ‘splot‘ contain many common features; see

‘splot‘ for differences. Note specifically that ‘splot‘’s
binary
and

matrix
options do not exist for

plot
.

Syntax:
plot {<ranges>}

{<function> | {"<datafile>" {datafile-modifiers}}}
{axes <axes>} {<title-spec>} {with <style>}
{, {definitions,} <function> ...}

where either a <function> or the name of a data file enclosed in
quotes is supplied. A function is a mathematical expression or a pair
of mathematical expressions in parametric mode. The expressions may be
defined completely or in part earlier in the stream of ‘gnuplot‘
commands (see ‘user-defined‘).

It is also possible to define functions and parameters on the
plot
command itself. This is done merely by isolating them from other ←↩

items
with commas.

gnuplot 57 / 236

There are four possible sets of axes available; the keyword <axes>
is used to select the axes for which a particular line should be
scaled. ‘x1y1‘ refers to the axes on the bottom and left; ‘x2y2‘ to
those on the top and right; ‘x1y2‘ to those on the bottom and right;
and ‘x2y1‘ to those on the top and left. Ranges specified on the

plot
command apply only to the first set of axes (bottom left).

Examples:
plot sin(x)
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot [t=1:10] [-pi:pi*2] tan(t), \

"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5

data-file

errorbars

parametric

ranges

title

with

1.96 gnuplot.guide/data-file

data-file

Discrete data contained in a file can be displayed by specifying the
name of the data file (enclosed in single or double quotes) on the

plot
command line.

Syntax:
plot ’<file_name>’ {index <index list>}

{every <every list>}
{thru <thru expression>}
{using <using list>}
{smooth <option>}

The modifiers
index
,
every
,
thru
,

gnuplot 58 / 236

using
, and
smooth
are

discussed separately. In brief,
index
selects which data sets in a

multi-data-set file are to be plotted,
every
specifies which points

within a single data set are to be plotted,
using
determines how the

columns within a single record are to be interpreted (
thru
is a

special case of
using
), and
smooth
allows for simple interpolation

and approximation. (’splot’ has a similar syntax, but does not support
the

smooth
and

thru
options.)

Data files should contain at least one data point per record (
using
can select one data point from the record). Records beginning ←↩

with ‘#‘
(and also with ‘!‘ on VMS) will be treated as comments and ignored.
Each data point represents an (x,y) pair. For

plot
s with error bars

(see
errorbars
), each data point is (x,y,ydelta), (x,y,ylow,yhigh),

(x,y,xdelta), (x,y,xlow,xhigh), or (x,y,xlow,xhigh,ylow,yhigh). In all
cases, the numbers on each record of a data file must be separated by
white space (one or more blanks or tabs), unless a format specifier is
provided by the

using
option. This white space divides each record

into columns.

Data may be written in exponential format with the exponent preceded
by the letter e, E, d, D, q, or Q.

Only one column (the y value) need be provided. If x is omitted,
‘gnuplot‘ provides integer values starting at 0.

In datafiles, blank records (records with no characters other than
blanks and a newline and/or carriage return) are significant--pairs of
blank records separate

index

gnuplot 59 / 236

es (see
index
). Data separated by double

blank records are treated as if they were in separate data files.

Single blank records designate discontinuities in a
plot
; no line

will join points separated by a blank records (if they are plotted with
a line style).

If autoscaling has been enabled (
autoscale
), the axes are

automatically extended to include all datapoints, with a whole number
of tic marks if tics are being drawn. This has two consequences: i)
For ‘splot‘, the corner of the surface may not coincide with the corner
of the base. In this case, no vertical line is drawn. ii) When
plotting data with the same x range on a dual-axis graph, the x
coordinates may not coincide if the x2tics are not being drawn. This
is because the x axis has been autoextended to a whole number of tics,
but the x2 axis has not. The following example illustrates the problem:

reset; plot ’-’, ’-’
1 1
19 19
e
1 1
19 19
e

every

example_datafile

index

smooth

special-filenames

thru

using

1.97 gnuplot.guide/every

every
.....

The
every

gnuplot 60 / 236

keyword allows a periodic sampling of a data set to be
plotted.

In the discussion a "point" is a datum defined by a single record in
the file; "block" here will mean the same thing as "datablock" (see
‘glossary‘).

Syntax:
plot ’file’ every {<point_incr>}

{:{<block_incr>}
{:{<start_point>}

{:{<start_block>}
{:{<end_point>}
{:<end_block>}}}}}

The data points to be plotted are selected according to a loop from
<‘start_point‘> to <‘end_point‘> with increment <‘point_incr‘> and the
blocks according to a loop from <‘start_block‘> to <‘end_block‘> with
increment <‘block_incr‘>.

The first datum in each block is numbered ’0’, as is the first block
in the file.

Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity,
the start values to the first point or block, and the end values to the
last point or block. If

every
is not specified, all points in all

lines are plotted.

Examples:
every :::3::3 # selects just the fourth block (’0’ is first)
every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block

Simple Plot Demos (http://www.gnuplot.vt.edu/gnuplot/gpdocs/simple.html),
Non-parametric splot demos (http://www.nas.nasa.gov/~woo/gnuplot/surfacea/ ←↩

surfacea.html), and
Parametric splot demos. (http://www.nas.nasa.gov/~woo/gnuplot/surfaceb/surfaceb. ←↩

html)

1.98 gnuplot.guide/example_datafile

example datafile
................

This example plots the data in the file "population.dat" and a
theoretical curve:

pop(x) = 103*exp((1965-x)/10)

gnuplot 61 / 236

plot [1960:1990] ’population.dat’, pop(x)

The file "population.dat" might contain:

Gnu population in Antarctica since 1965
1965 103
1970 55
1975 34
1980 24
1985 10

1.99 gnuplot.guide/index

index
.....

The
index
keyword allows only some of the data sets in a

multi-data-set file to be plotted.

Syntax:
plot ’file’ index <m>{{:<n>}:<p>}

Data sets are separated by pairs of blank records. ‘index <m>‘
selects only set <m>; ‘index <m>:<n>‘ selects sets in the range <m> to
<n>; and ‘index <m>:<n>:<p>‘ selects indices <m>, <m>+<p>, <m>+2<p>,
etc., but stopping at <n>. Following C indexing, the index 0 is
assigned to the first data set in the file. Specifying too large an
index results in an error message. If

index
is not specified, all

sets are plotted as a single data set.

Example:
plot ’file’ index 4:5

splot with indices demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/multimsh. ←↩
html)

1.100 gnuplot.guide/smooth

smooth
......

‘gnuplot‘ includes a few general-purpose routines for interpolation
and approximation of data; these are grouped under the

smooth
option.

gnuplot 62 / 236

More sophisticated data processing may be performed by preprocessing
the data externally or by using ‘fit‘ with an appropriate model.

Syntax:
smooth {unique | csplines | acsplines | bezier | sbezier}

‘unique‘ plots the data after making them monotonic. Each of the
other routines uses the data to determine the coefficients of a
continuous curve between the endpoints of the data. This curve is then
plotted in the same manner as a function, that is, by finding its value
at uniform intervals along the abscissa (see

samples
) and connecting

these points with straight line segments (if a line style is chosen).

If
autoscale
is in effect, the ranges will be computed such that the

plotted curve lies within the borders of the graph.

If too few points are available to allow the selected option to be
applied, an error message is produced. The minimum number is one for
‘unique‘, four for ‘acsplines‘, and three for the others.

The
smooth
options have no effect on function plots.

-- ACSPLINES --

The ‘acsplines‘ option approximates the data with a "natural
smoothing spline". After the data are made monotonic in x (see ‘smooth
unique‘), a curve is piecewise constructed from segments of cubic
polynomials whose coefficients are found by the weighting the data
points; the weights are taken from the third column in the data file.
That default can be modified by the third entry in the

using
list,

e.g.,
plot ’data-file’ using 1:2:(1.0) smooth acsplines

Qualitatively, the absolute magnitude of the weights determines the
number of segments used to construct the curve. If the weights are
large, the effect of each datum is large and the curve approaches that
produced by connecting consecutive points with natural cubic splines.
If the weights are small, the curve is composed of fewer segments and
thus is smoother; the limiting case is the single segment produced by a
weighted linear least squares fit to all the data. The smoothing
weight can be expressed in terms of errors as a statistical weight for
a point divided by a "smoothing factor" for the curve so that
(standard) errors in the file can be used as smoothing weights.

Example:
sw(x,S)=1/(x*x*S)
plot ’data_file’ using 1:2:(sw($3,100)) smooth acsplines

-- BEZIER --

gnuplot 63 / 236

The ‘bezier‘ option approximates the data with a Bezier curve of
degree n (the number of data points) that connects the endpoints.

-- CSPLINES --

The ‘csplines‘ option connects consecutive points by natural cubic
splines after rendering the data monotonic (see ‘smooth unique‘).

-- SBEZIER --

The ‘sbezier‘ option first renders the data monotonic (‘unique‘) and
then applies the ‘bezier‘ algorithm.

-- UNIQUE --

The ‘unique‘ option makes the data monotonic in x; points with the
same x-value are replaced by a single point having the average y-value.
The resulting points are then connected by straight line segments.
See demos. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/mgr.html)

1.101 gnuplot.guide/special-filenames

special-filenames
.................

A special filename of ‘’-’‘ specifies that the data are inline;
i.e., they follow the command. Only the data follow the command;

plot
options like filters, titles, and line styles remain on the ’plot’

command line. This is similar to << in unix shell script, and $DECK in
VMS DCL. The data are entered as though they are being read from a
file, one data point per record. The letter "e" at the start of the
first column terminates data entry. The

using
option can be applied

to these data--using it to filter them through a function might make
sense, but selecting columns probably doesn’t!

‘’-’‘ is intended for situations where it is useful to have data and
commands together, e.g., when ‘gnuplot‘ is run as a sub-process of some
front-end application. Some of the demos, for example, might use this
feature. While

plot
options such as

index
and

every
are recognized,

their use forces you to enter data that won’t be used. For example,
while

plot ’-’ index 0, ’-’ index 1

gnuplot 64 / 236

2
4
6

10
12
14
e
2
4
6

10
12
14
e

does indeed work,

plot ’-’, ’-’
2
4
6
e
10
12
14
e

is a lot easier to type.

If you use ‘’-’‘ with
replot
, you may need to enter the data more

than once (see
replot
).

A blank filename (") specifies that the previous filename should be
reused. This can be useful with things like

plot ’a/very/long/filename’ using 1:2, ’’ using 1:3, ’’ using 1:4

(If you use both ‘’-’‘ and ‘"‘ on the same
plot
command, you’ll

need to have two sets of inline data, as in the example above.)

On some computer systems with a popen function (Unix), the datafile
can be piped through a shell command by starting the file name with a
’<’. For example,

pop(x) = 103*exp(-x/10)
plot "< awk ’{print $1-1965, $2}’ population.dat", pop(x)

would plot the same information as the first population example but
with years since 1965 as the x axis. If you want to execute this

gnuplot 65 / 236

example, you have to delete all comments from the data file above or
substitute the following command for the first part of the command
above (the part up to the comma):

plot "< awk ’$0 !~ /^#/ {print $1-1965, $2}’ population.dat"

While this approach is most flexible, it is possible to achieve
simple filtering with the

using
or

thru
keywords.

1.102 gnuplot.guide/thru

thru
....

The
thru
function is provided for backward compatibility.

Syntax:
plot ’file’ thru f(x)

It is equivalent to:

plot ’file’ using 1:(f($2))

While the latter appears more complex, it is much more flexible.
The more natural

plot ’file’ thru f(y)

also works (i.e. you can use y as the dummy variable).

thru
is parsed for ‘splot‘ and ‘fit‘ but has no effect.

1.103 gnuplot.guide/using

using
.....

The most common datafile modifier is
using
.

gnuplot 66 / 236

Syntax:
plot ’file’ using {<entry> {:<entry> {:<entry> ...}}} {’format’}

If a format is specified, each datafile record is read using the C
library’s ’scanf’ function, with the specified format string.
Otherwise the record is read and broken into columns at spaces or tabs.
A format cannot be specified if time-format data is being used (this
must be done by ‘set data time‘).

The resulting array of data is then sorted into columns according to
the entries. Each <entry> may be a simple column number, which selects
the datum, an expression enclosed in parentheses, or empty. The
expression can use $1 to access the first item read, $2 for the second
item, and so on. It can also use ‘column(x)‘ and ‘valid(x)‘ where x is
an arbitrary expression resulting in an integer. ‘column(x)‘ returns
the x’th datum; ‘valid(x)‘ tests that the datum in the x’th column is a
valid number. A column number of 0 generates a number increasing (from
zero) with each point, and is reset upon encountering two blank
records. A column number of -1 gives the dataline number, which starts
at 0, increments at single blank records, and is reset at double blank
records. A column number of -2 gives the index number, which is
incremented only when two blank records are found. An empty <entry>
will default to its order in the list of entries. For example, ‘using
::4‘ is interpreted as ‘using 1:2:4‘.

N.B.--the
call
command also uses $’s as a special character. See

call
for details about how to include a column number in a
call
argument

list.

If the
using
list has but a single entry, that <entry> will be used

for y and the data point number is used for x; for example, "‘plot
’file’ using 1‘" is identical to "‘plot ’file’ using 0:1‘". If the

using
list has two entries, these will be used for x and y.

Additional entries are usually errors in x and/or y. See
style
for

details about plotting styles that make use of error information, and
‘fit‘ for use of error information in curve fitting.

’scanf’ accepts several numerical specifications but ‘gnuplot‘
requires all inputs to be double-precision floating-point variables, so
‘lf‘ is the only permissible specifier. ’scanf’ expects to see white
space--a blank, tab ("\t"), newline ("\n"), or formfeed
("\f")--between numbers; anything else in the input stream must be
explicitly skipped.

Note that the use of "\t", "\n", or "\f" or requires use of

gnuplot 67 / 236

double-quotes rather than single-quotes.

Examples:

This creates a plot of the sum of the 2nd and 3rd data against the
first: (The format string specifies comma- rather than space-separated
columns.)

plot ’file’ using 1:($2+$3) ’%lf,%lf,%lf’

In this example the data are read from the file "MyData" using a more
complicated format:

plot ’MyData’ using "%*lf%lf%*20[^\n]%lf"

The meaning of this format is:

%*lf ignore a number
%lf read a double-precision number (x by default)
%*20[^\n] ignore 20 non-newline characters
%lf read a double-precision number (y by default)

One trick is to use the ternary ‘?:‘ operator to filter data:

plot ’file’ using 1:($3>10 ? $2 : 1/0)

which plots the datum in column two against that in column one
provided the datum in column three exceeds ten. ‘1/0‘ is undefined;
‘gnuplot‘ quietly ignores undefined points, so unsuitable points are
suppressed.

In fact, you can use a constant expression for the column number,
provided it doesn’t start with an opening parenthesis; constructs like
‘using 0+(complicated expression)‘ can be used. The crucial point is
that the expression is evaluated once if it doesn’t start with a left
parenthesis, or once for each data point read if it does.

If timeseries data are being used, the time can span multiple
columns. The starting column should be specified. Note that the
spaces within the time must be included when calculating starting
columns for other data. E.g., if the first element on a line is a time
with an embedded space, the y value should be specified as column three.

It should be noted that ‘plot ’file’‘, ‘plot ’file’ using 1:2‘, and
‘plot ’file’ using ($1):($2)‘ can be subtly different: 1) if ‘file‘ has
some lines with one column and some with two, the first will invent x
values when they are missing, the second will quietly ignore the lines
with one column, and the third will store an undefined value for lines
with one point (so that in a plot with lines, no line joins points
across the bad point); 2) if a line contains text at the first column,
the first will abort the plot on an error, but the second and third
should quietly skip the garbage.

In fact, it is often possible to plot a file with lots of lines of
garbage at the top simply by specifying

plot ’file’ using 1:2

However, if you want to leave text in your data files, it is safer

gnuplot 68 / 236

to put the comment character (#) in the first column of the text lines.
Feeble using demos.
(http://www.gnuplot.vt.edu/gnuplot/gpdocs/using.html)

1.104 gnuplot.guide/errorbars

errorbars

Error bars are supported for 2-d data file plots by reading one to
four additional columns (or

using
entries); these additional values

are used in different ways by the various errorbar styles.

In the default situation, ‘gnuplot‘ expects to see three, four, or
six numbers on each line of the data file--either

(x, y, ydelta),
(x, y, ylow, yhigh),
(x, y, xdelta),
(x, y, xlow, xhigh),
(x, y, xdelta, ydelta), or
(x, y, xlow, xhigh, ylow, yhigh).

The x coordinate must be specified. The order of the numbers must be
exactly as given above, though the

using
qualifier can manipulate the

order and provide values for missing columns. For example,

plot ’file’ with errorbars
plot ’file’ using 1:2:(sqrt($1)) with xerrorbars
plot ’file’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

The last example is for a file containing an unsupported combination
of relative x and absolute y errors. The

using
entry generates

absolute x min and max from the relative error.

The y error bar is a vertical line plotted from (x, ylow) to (x,
yhigh). If ydelta is specified instead of ylow and yhigh, ylow = y -
ydelta and yhigh = y + ydelta are derived. If there are only two
numbers on the record, yhigh and ylow are both set to y. The x error
bar is a horizontal line computed in the same fashion. To get lines
plotted between the data points,

plot
the data file twice, once with

errorbars and once with lines (but remember to use the ‘notitle‘ option
on one to avoid two entries in the key).

The error bars have crossbars at each end unless

gnuplot 69 / 236

bar
is used (see

bar
for details).

If autoscaling is on, the ranges will be adjusted to include the
error bars.
Errorbar demos. (http://www.nas.nasa.gov/~woo/gnuplot/errorbar/errorbar.html)

See
using
,
with
, and
style
for more information.

1.105 gnuplot.guide/parametric

parametric

When in parametric mode (‘set parametric‘) mathematical expressions
must be given in pairs for

plot
and in triplets for ‘splot‘.

Examples:
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric
function must be fully specified before a data file is given as a plot.
In other words, the x parametric function (‘sin(t)‘ above) and the y
parametric function (‘t**2‘ above) must not be interrupted with any
modifiers or data functions; doing so will generate a syntax error
stating that the parametric function is not fully specified.

Other modifiers, such as
with
and ‘title‘, may be specified only

after the parametric function has been completed:

plot sin(t),t**2 title ’Parametric example’ with linespoints

Parametric Mode Demos. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/param.html)

gnuplot 70 / 236

1.106 gnuplot.guide/ranges

ranges

The optional ranges specify the region of the graph that will be
displayed.

Syntax:
[{<dummy-var>=}{{<min>}:{<max>}}]
[{{<min>}:{<max>}}]

The first form applies to the independent variable (
xrange
or

trange
, if in parametric mode). The second form applies to the

dependent variable
yrange
(and

xrange
, too, if in parametric mode).

<dummy-var> is a new name for the independent variable. (The defaults
may be changed with

dummy
.) The optional <min> and <max> terms can be

constant expressions or *.

In non-parametric mode, the order in which ranges must be given is
xrange
and
yrange
.

In parametric mode, the order for the
plot
command is

trange
,

xrange
, and
yrange
. The following
plot
command shows setting the

trange
to [-pi:pi], the

xrange
to [-1.3:1.3] and the

yrange
to

[-1:1] for the duration of the graph:

gnuplot 71 / 236

plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2

Note that the x2range and y2range cannot be specified here--
x2range
and
y2range
must be used.

Ranges are interpreted in the order listed above for the appropriate
mode. Once all those needed are specified, no further ones must be
listed, but unneeded ones cannot be skipped--use an empty range ‘[]‘ as
a placeholder.

‘*‘ can be used to allow autoscaling of either of min and max. See
also

autoscale
.

Ranges specified on the
plot
or ‘splot‘ command line affect only

that graph; use the
xrange
,
yrange
, etc., commands to change the

default ranges for future graphs.

With time data, you must provide the range (in the same manner as
the time appears in the datafile) within quotes. ‘gnuplot‘ uses the

timefmt
string to read the value--see

timefmt
.

Examples:

This uses the current ranges:
plot cos(x)

This sets the x range only:
plot [-10:30] sin(pi*x)/(pi*x)

This is the same, but uses t as the dummy-variable:
plot [t = -10 :30] sin(pi*t)/(pi*t)

This sets both the x and y ranges:
plot [-pi:pi] [-3:3] tan(x), 1/x

This sets only the y range, and turns off autoscaling on both axes:
plot [] [-2:sin(5)*-8] sin(x)**besj0(x)

This sets xmax and ymin only:
plot [:200] [-pi:] exp(sin(x))

This sets the x range for a timeseries:

gnuplot 72 / 236

set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] ’timedata.dat’

See Demo. (http://www.nas.nasa.gov/~woo/gnuplot/ranges/ranges.html)

1.107 gnuplot.guide/title

title

A line title for each function and data set appears in the key,
accompanied by a sample of the line and/or symbol used to represent it.
It can be changed by using the ‘title‘ option.

Syntax:
title "<title>" | notitle

where <title> is the new title of the line and must be enclosed in
quotes. The quotes will not be shown in the key. A special character
may be given as a backslash followed by its octal value ("\345"). The
tab character "\t" is understood. Note that backslash processing
occurs only for strings enclosed in double quotes--use single quotes to
prevent such processing. The newline character "\n" is not processed
in key entries in either type of string.

The line title and sample can be omitted from the key by using the
keyword ‘notitle‘. A null title (‘title "‘) is equivalent to
‘notitle‘. If only the sample is wanted, use one or more blanks
(‘title ’ ’‘).

By default the line title is the function or file name as it appears
on the

plot
command. If it is a file name, any datafile modifiers

specified will be included in the default title.

The layout of the key itself (position, title justification, etc.)
can be controlled by

key
. Please see
key
for details.

Examples:

This plots y=x with the title ’x’:
plot x

This plots x squared with title "x^2" and file "data.1" with title
"measured data":

plot x**2 title "x^2", ’data.1’ t "measured data"

This puts an untitled circular border around a polar graph:

gnuplot 73 / 236

set polar; plot my_function(t), 1 notitle

1.108 gnuplot.guide/with

with

Functions and data may be displayed in one of a large number of
styles. The

with
keyword provides the means of selection.

Syntax:
with <style> { {linestyle | ls <line_style>}

| {{linetype | lt <line_type>}
{linewidth | lw <line_width>}
{pointtype | pt <point_type>}
{pointsize | ps <point_size>}} }

where <style> is either ‘lines‘, ‘points‘,
linespoints
,
impulses
,

dots
,
steps
,
fsteps
,
histeps
,
errorbars
,
xerrorbars
,
yerrorbars
,

xyerrorbars
,
boxes
,
boxerrorbars
,
boxxyerrorbars
,
financebars
,

candlesticks
or

gnuplot 74 / 236

vector
. Some of these styles require additional

information. See ‘set style <style>‘ for details of each style.

Default styles are chosen with the
style
and

style
commands.

By default, each function and data file will use a different line
type and point type, up to the maximum number of available types. All
terminal drivers support at least six different point types, and re-use
them, in order, if more are required. The LaTeX driver supplies an
additional six point types (all variants of a circle), and thus will
only repeat after 12 curves are plotted with points. The PostScript
drivers (‘postscript‘) supplies a total of 64.

If you wish to choose the line or point type for a single plot,
<line_type> and <point_type> may be specified. These are positive
integer constants (or expressions) that specify the line type and point
type to be used for the plot. Use

test
to display the types available

for your terminal.

You may also scale the line width and point size for a plot by using
<line_width> and <point_size>, which are specified relative to the
default values for each terminal. The pointsize may also be altered
globally--see

pointsize
for details. But note that both <point_size>

as set here and as set by
pointsize
multiply the default point

size--their effects are not cumulative. That is, ‘set pointsize 2;
plot x w p ps 3‘ will use points three times default size, not six.

If you have defined specific line type/width and point type/size
combinations with

linestyle
, one of these may be selected by setting

<line_style> to the index of the desired style.

The keywords may be abbreviated as indicated.

Note that the ‘linewidth‘ and
pointsize
options are not supported

by all terminals.

Examples:

This plots sin(x) with impulses:
plot sin(x) with impulses

This plots x with points, x**2 with the default:

gnuplot 75 / 236

plot x*y w points, x**2 + y**2

This plots tan(x) with the default function style, file "data.1"
with lines:

plot [] [-2:5] tan(x), ’data.1’ with l

This plots "leastsq.dat" with impulses:
plot ’leastsq.dat’ w i

This plots the data file "population" with boxes:
plot ’population’ with boxes

This plots "exper.dat" with errorbars and lines connecting the points
(errorbars require three or four columns):

plot ’exper.dat’ w lines, ’exper.dat’ notitle w errorbars

This plots sin(x) and cos(x) with linespoints, using the same line
type but different point types:

plot sin(x) with linesp lt 1 pt 3, cos(x) with linesp lt 1 pt 4

This plots file "data" with points of type 3 and twice usual size:
plot ’data’ with points pointtype 3 pointsize 2

This plots two data sets with lines differing only by weight:
plot ’d1’ t "good" w l lt 2 lw 3, ’d2’ t "bad" w l lt 2 lw 1

See
style
to change the default styles.

Styles demos. (http://www.nas.nasa.gov/~woo/gnuplot/styles/styles.html)

1.109 gnuplot.guide/print

print
=====

The
print
command prints the value of <expression> to the screen.

It is synonymous with ‘pause 0‘. <expression> may be anything that
‘gnuplot‘ can evaluate that produces a number, or it can be a string.

Syntax:
print <expression> {, <expression>, ...}

See ‘expressions‘.

1.110 gnuplot.guide/pwd

gnuplot 76 / 236

pwd
===

The
pwd
command prints the name of the working directory to the

screen.

1.111 gnuplot.guide/quit

quit
====

The
exit
and

quit
commands and END-OF-FILE character will exit

‘gnuplot‘. Each of these commands will clear the output device (as
does the

clear
command) before exiting.

1.112 gnuplot.guide/replot

replot
======

The
replot
command without arguments repeats the last

plot
or

‘splot‘ command. This can be useful for viewing a plot with different
‘set‘ options, or when generating the same plot for several devices.

Arguments specified after a
replot
command will be added onto the

last
plot
or ‘splot‘ command (with an implied ’,’ separator) before it

is repeated.
replot
accepts the same arguments as the

plot
and

gnuplot 77 / 236

‘splot‘ commands except that ranges cannot be specified. Thus you can
use

replot
to plot a function against the second axes if the previous

command was
plot
but not if it was ‘splot‘, and similarly you can use

replot
to add a plot from a binary file only if the previous command

was ‘splot‘.

N.B.--use of

plot ’-’ ; ... ; replot

is not recommended. ‘gnuplot‘ does not store the inline data
internally, so since

replot
appends new information to the previous

plot
and then executes the modified command, the ‘’-’‘ from the

initial
plot
will expect to read inline data again.

Note that
replot
does not work in

multiplot
mode, since it

reproduces only the last plot rather than the entire screen.

See also ‘command-line-editing‘ for ways to edit the last
plot
(‘splot‘) command.

1.113 gnuplot.guide/reread

reread
======

The
reread
command causes the current ‘gnuplot‘ command file, as

specified by a
load
command or on the command line, to be reset to its

starting point before further commands are read from it. This
essentially implements an endless loop of the commands from the
beginning of the command file to the

reread

gnuplot 78 / 236

command. (But this is not
necessarily a disaster--

reread
can be very useful when used in

conjunction with
if
. See
if
for details.) The

reread
command has

no effect if input from standard input.

Examples:

Suppose the file "looper" contains the commands
a=a+1
plot sin(x*a)
pause -1
if(a<5) reread

and from within ‘gnuplot‘ you submit the commands
a=0
load ’looper’

The result will be four plots (separated by the
pause
message).

Suppose the file "data" contains six columns of numbers with a total
yrange from 0 to 10; the first is x and the next are five different
functions of x. Suppose also that the file "plotter" contains the
commands

c_p = c_p+1
plot "$0" using 1:c_p with lines linetype c_p
if(c_p < n_p) reread

and from within ‘gnuplot‘ you submit the commands
n_p=6
c_p=1
set nokey
set yrange [0:10]
set multiplot
call ’plotter’ ’data’
set nomultiplot

The result is a single graph consisting of five plots. The yrange
must be set explicitly to guarantee that the five separate graphs
(drawn on top of each other in multiplot mode) will have exactly the
same axes. The linetype must be specified; otherwise all the plots
would be drawn with the same type.
Reread Animation Demo (http://www.gnuplot.vt.edu/gnuplot/gpdocs/animate.html)

gnuplot 79 / 236

1.114 gnuplot.guide/reset

reset
=====

The
reset
command causes all options that can be set with the ‘set‘

command to take on their default values. The only exceptions are that
the terminal set with ‘set term‘ and the output file set with

output
are left unchanged. This command is useful, e.g., to restore the

default settings at the end of a command file, or to return to a
defined state after lots of settings have been changed within a command
file. Please refer to the ‘set‘ command to see the default values that
the various options take.

1.115 gnuplot.guide/save

save
====

The
save
command saves user-defined functions, variables, ‘set‘

options, or all three, plus the last
plot
(‘splot‘) command to the

specified file.

Syntax:
save {<option>} ’<filename>’

where <option> is
functions
,
variables
or ‘set‘. If no option is

used, ‘gnuplot‘ saves functions, variables, ‘set‘ options and the last
plot
(‘splot‘) command.

save
d files are written in text format and may be read by the
load
command.

The filename must be enclosed in quotes.

Examples:
save ’work.gnu’

gnuplot 80 / 236

save functions ’func.dat’
save var ’var.dat’
save set ’options.dat’

1.116 gnuplot.guide/set-show

set-show
========

The ‘set‘ command can be used to sets _lots_ of options. No screen
is drawn, however, until a

plot
, ‘splot‘, or
replot
command is given.

The ‘show‘ command shows their settings; ‘show all‘ shows all the
settings.

If a variable contains time/date data, ‘show‘ will display it
according to the format currently defined by

timefmt
, even if that was

not in effect when the variable was initially defined.

angles

arrow

autoscale

bar

bmargin

border

boxwidth

clabel

clip

cntrparam

contour

data_style

dgrid3d

gnuplot 81 / 236

dummy

encoding

format

function_style

functions

grid

hidden3d

isosamples

key

label

linestyle

lmargin

locale

logscale

mapping

margin

missing

multiplot

mx2tics

mxtics

my2tics

mytics

mztics

offsets

origin

output

parametric_

pointsize

polar

gnuplot 82 / 236

rmargin

rrange

samples

size

style

surface

terminal

tics

ticslevel

ticscale

timestamp

timefmt

title_

tmargin

trange

urange

variables

version

view

vrange

x2data

x2dtics

x2label

x2mtics

x2range

x2tics

x2zeroaxis

xdata

gnuplot 83 / 236

xdtics

xlabel

xmtics

xrange

xtics

xzeroaxis

y2data

y2dtics

y2label

y2mtics

y2range

y2tics

y2zeroaxis

ydata

ydtics

ylabel

ymtics

yrange

ytics

yzeroaxis

zdata

zdtics

zero

zeroaxis

zlabel

zmtics

zrange

ztics

gnuplot 84 / 236

1.117 gnuplot.guide/angles

angles

By default, ‘gnuplot‘ assumes the independent variable in polar
graphs is in units of radians. If ‘set angles degrees‘ is specified
before ‘set polar‘, then the default range is [0:360] and the
independent variable has units of degrees. This is particularly useful
for plots of data files. The angle setting also applies to 3-d mapping
as set via the

mapping
command.

Syntax:
set angles {degrees | radians}
show angles

The angle specified in ‘set grid polar‘ is also read and displayed
in the units specified by

angles
.

angles
also affects the arguments of the machine-defined functions

sin(x), cos(x) and tan(x), and the outputs of asin(x), acos(x), atan(x),
atan2(x), and arg(x). It has no effect on the arguments of hyperbolic
functions or Bessel functions. However, the output arguments of inverse
hyperbolic functions of complex arguments are affected; if these
functions are used, ‘set angles radians‘ must be in effect to maintain
consistency between input and output arguments.

x={1.0,0.1}
set angles radians
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {1.0, 0.1}

but
set angles degrees
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {57.29578, 5.729578}

Polar plot using
angles
. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/poldat.html)

1.118 gnuplot.guide/arrow

arrow

gnuplot 85 / 236

Arbitrary arrows can be placed on a plot using the
arrow
command.

Syntax:
set arrow {<tag>} {from <position>} {to <position>} {{no}head}

{ {linestyle | ls <line_style>}
| {linetype | lt <line_type>}

{linewidth | lw <line_width} }
set noarrow {<tag>}
show arrow

<tag> is an integer that identifies the arrow. If no tag is given,
the lowest unused tag value is assigned automatically. The tag can be
used to delete or change a specific arrow. To change any attribute of
an existing arrow, use the

arrow
command with the appropriate tag and

specify the parts of the arrow to be changed.

The <position>s are specified by either x,y or x,y,z, and may be
preceded by ‘first‘, ‘second‘, ‘graph‘, or ‘screen‘ to select the
coordinate system. Unspecified coordinates default to 0. The
endpoints can be specified in one of four coordinate systems--‘first‘
or ‘second‘ axes, ‘graph‘ or ‘screen‘. See ‘coordinates‘ for details.
A coordinate system specifier does not carry over from the "from"
position to the "to" position. Arrows outside the screen boundaries
are permitted but may cause device errors.

Specifying ‘nohead‘ produces an arrow drawn without a head--a line
segment. This gives you yet another way to draw a line segment on the
plot. By default, arrows have heads.

The line style may be selected from a user-defined list of line
styles (see

linestyle
) or may be defined here by providing values for

<line_type> (an index from the default list of styles) and/or
<line_width> (which is a multiplier for the default width).

Note, however, that if a user-defined line style has been selected,
its properties (type and width) cannot be altered merely by issuing
another

arrow
command with the appropriate index and ‘lt‘ or ‘lw‘.

Examples:

To set an arrow pointing from the origin to (1,2) with user-defined
style 5, use:

set arrow to 1,2 ls 5

To set an arrow from bottom left of plotting area to (-5,5,3), and
tag the arrow number 3, use:

set arrow 3 from graph 0,0 to -5,5,3

gnuplot 86 / 236

To change the preceding arrow to end at 1,1,1, without an arrow head
and double its width, use:

set arrow 3 to 1,1,1 nohead lw 2

To draw a vertical line from the bottom to the top of the graph at
x=3, use:

set arrow from 3, graph 0 to 3, graph 1 nohead

To delete arrow number 2, use:
set noarrow 2

To delete all arrows, use:
set noarrow

To show all arrows (in tag order), use:
show arrow

Arrows Demos. (http://www.nas.nasa.gov/~woo/gnuplot/arrows/arrows.html)

1.119 gnuplot.guide/autoscale

autoscale

Autoscaling may be set individually on the x, y or z axis or
globally on all axes. The default is to autoscale all axes.

Syntax:
set autoscale {<axes>{min|max}}
set noautoscale {<axes>{min|max}}
show autoscale

where <axes> is either ‘x‘, ‘y‘, ‘z‘, ‘x2‘, ‘y2‘ or ‘xy‘. A keyword
with ‘min‘ or ‘max‘ appended (this cannot be done with ‘xy‘) tells
‘gnuplot‘ to autoscale just the minimum or maximum of that axis. If no
keyword is given, all axes are autoscaled.

When autoscaling, the axis range is automatically computed and the
dependent axis (y for a

plot
and z for ‘splot‘) is scaled to include

the range of the function or data being plotted.

If autoscaling of the dependent axis (y or z) is not set, the
current y or z range is used.

Autoscaling the independent variables (x for
plot
and x,y for

‘splot‘) is a request to set the domain to match any data file being
plotted. If there are no data files, autoscaling an independent
variable has no effect. In other words, in the absence of a data file,

gnuplot 87 / 236

functions alone do not affect the x range (or the y range if plotting z
= f(x,y)).

Please see
xrange
for additional information about ranges.

The behavior of autoscaling remains consistent in parametric mode,
(see ‘set parametric‘). However, there are more dependent variables
and hence more control over x, y, and z axis scales. In parametric
mode, the independent or dummy variable is t for

plot
s and u,v for

‘splot‘s.
autoscale
in parametric mode, then, controls all ranges (t,

u, v, x, y, and z) and allows x, y, and z to be fully autoscaled.

Autoscaling works the same way for polar mode as it does for
parametric mode for

plot
, with the extension that in polar mode
dummy
can be used to change the independent variable from t (see
dummy
).

When tics are displayed on second axes but no plot has been
specified for those axes, x2range and y2range are inherited from xrange
and yrange. This is done _before_ xrange and yrange are autoextended
to a whole number of tics, which can cause unexpected results.

Examples:

This sets autoscaling of the y axis (other axes are not affected):
set autoscale y

This sets autoscaling only for the minimum of the y axis (the
maximum of the y axis and the other axes are not affected):

set autoscale ymin

This sets autoscaling of the x and y axes:
set autoscale xy

This sets autoscaling of the x, y, z, x2 and y2 axes:
set autoscale

This disables autoscaling of the x, y, z, x2 and y2 axes:
set noautoscale

This disables autoscaling of the z axis only:
set noautoscale z

parametric_mode

gnuplot 88 / 236

polar_mode

1.120 gnuplot.guide/parametric_mode

parametric mode
...............

When in parametric mode (‘set parametric‘), the xrange is as fully
scalable as the y range. In other words, in parametric mode the x axis
can be automatically scaled to fit the range of the parametric function
that is being plotted. Of course, the y axis can also be automatically
scaled just as in the non-parametric case. If autoscaling on the x
axis is not set, the current x range is used.

Data files are plotted the same in parametric and non-parametric
mode. However, there is a difference in mixed function and data plots:
in non-parametric mode with autoscaled x, the x range of the datafile
controls the x range of the functions; in parametric mode it has no
influence.

For completeness a last command ‘set autoscale t‘ is accepted.
However, the effect of this "scaling" is very minor. When ‘gnuplot‘
determines that the t range would be empty, it makes a small adjustment
if autoscaling is true. Otherwise, ‘gnuplot‘ gives an error. Such
behavior may, in fact, not be very useful and the command ‘set
autoscale t‘ is certainly questionable.

‘splot‘ extends the above ideas as you would expect. If autoscaling
is set, then x, y, and z ranges are computed and each axis scaled to
fit the resulting data.

1.121 gnuplot.guide/polar_mode

polar mode
..........

When in polar mode (‘set polar‘), the xrange and the yrange are both
found from the polar coordinates, and thus they can both be
automatically scaled. In other words, in polar mode both the x and y
axes can be automatically scaled to fit the ranges of the polar
function that is being plotted.

When plotting functions in polar mode, the rrange may be autoscaled.
When plotting data files in polar mode, the trange may also be
autoscaled. Note that if the trange is contained within one quadrant,
autoscaling will produce a polar plot of only that single quadrant.

Explicitly setting one or two ranges but not others may lead to
unexpected results.
See polar demos (http://www.gnuplot.vt.edu/gnuplot/gpdocs/poldat.html)

gnuplot 89 / 236

1.122 gnuplot.guide/bar

bar

The
bar
command controls the tics at the ends of errorbars.

Syntax:
set bar {small | large | <size>}
show bar

‘small‘ is a synonym for 0.0, and ‘large‘ for 1.0. The default is
1.0 if no size is given.

1.123 gnuplot.guide/bmargin

bmargin

The command
bmargin
sets the size of the bottom margin. Please see

margin
for details.

1.124 gnuplot.guide/border

border

The
border
and ‘set noborder‘ commands control the display of the

graph borders for the
plot
and ‘splot‘ commands.

Syntax:
set border {<integer> { {linestyle | ls <line_style>}

| {linetype | lt <line_type> }
{linewidth | lw <line_width>} } }

gnuplot 90 / 236

set noborder
show border

The borders are encoded in a 12-bit integer: the bottom four bits
control the border for

plot
and the sides of the base for ‘splot‘; The

next four bits control the verticals in ‘splot‘; the top four bits
control the edges on top of the ‘splot‘. In detail, the ‘<integer>‘
should be the sum of the appropriate entries from the following table:

plot border splot splot
Side splot base verticals top

bottom (south) 1 16 256
left (west) 2 32 512
top (north) 4 64 1024
right (east) 8 128 2048

The default is 31, which is all four sides for
plot
, and base and z

axis for ‘splot‘.

Using the optional <line_style>, <line_type> and <line_width>
specifiers, the way the border lines are drawn can be influenced
(limited by what the current terminal driver supports). By default,
the border is drawn with twice the usual linewidth. The <line_width>
specifier scales this default value; for example, ‘set border 15 lw 2‘
will produce a border with four times the usual linewidth.

Various axes or combinations of axes may be added together in the
command.

To have tics on edges other than bottom and left, disable the usual
tics and enable the second axes.

Examples:

Draw all borders:
set border

Draw only the SOUTHWEST borders:
set border 3

Draw a complete box around a ‘splot‘:
set border 4095

Draw a partial box, omitting the front vertical:
set border 127+256+512

Draw only the NORTHEAST borders:
set noxtics; set noytics; set x2tics; set y2tics; set border 12

Borders Demo. (http://www.nas.nasa.gov/~woo/gnuplot/borders/borders.html)

gnuplot 91 / 236

1.125 gnuplot.guide/boxwidth

boxwidth

The
boxwidth
command is used to set the default width of boxes in

the
boxes
and

boxerrorbars
styles.

Syntax:
set boxwidth {<width>}
show boxwidth

If a data file is plotted without the width being specified in the
third, fourth, or fifth column (or

using
entry), or if a function is

plotted, the width of each box is set by the
boxwidth
command. (If a

width is given both in the file and by the
boxwidth
command, the one

in the file is used.) If the width is not specified in one of these
ways, the width of each box will be calculated automatically so that it
touches the adjacent boxes. In a four-column data set, the fourth
column will be interpreted as the box width unless the width is set to
-2.0, in which case the width will be calculated automatically. See

boxerrorbars
for more details.

To set the box width to automatic use the command
set boxwidth

or, for four-column data,
set boxwidth -2

The same effect can be achieved with the
using
keyword in

plot
:

plot ’file’ using 1:2:3:4:(-2)

1.126 gnuplot.guide/clabel

gnuplot 92 / 236

clabel

‘gnuplot‘ will vary the linetype used for each contour level when
clabel is set. When this option on (the default), a legend labels each
linestyle with the z level it represents. It is not possible at
present to separate the contour labels from the surface key.

Syntax:
set clabel {’<format>’}
set noclabel
show clabel

The default for the format string is %8.3g, which gives three
decimal places. This may produce poor label alignment if the key is
altered from its default configuration.

The first contour linetype, or only contour linetype when clabel is
off, is the surface linetype +1; contour points are the same style as
surface points.

See also
contour
.

1.127 gnuplot.guide/clip

clip

‘gnuplot‘ can clip data points and lines that are near the
boundaries of a graph.

Syntax:
set clip <clip-type>
set noclip <clip-type>
show clip

Three clip types are supported by ‘gnuplot‘: ‘points‘, ‘one‘, and
‘two‘. One, two, or all three clip types may be active for a single
graph.

The ‘points‘ clip type forces ‘gnuplot‘ to clip (actually, not plot
at all) data points that fall within but too close to the boundaries.
This is done so that large symbols used for points will not extend
outside the boundary lines. Without clipping points near the
boundaries, the plot may look bad. Adjusting the x and y ranges may
give similar results.

Setting the ‘one‘ clip type causes ‘gnuplot‘ to draw a line segment
which has only one of its two endpoints within the graph. Only the
in-range portion of the line is drawn. The alternative is to not draw

gnuplot 93 / 236

any portion of the line segment.

Some lines may have both endpoints out of range, but pass through
the graph. Setting the ‘two‘ clip-type allows the visible portion of
these lines to be drawn.

In no case is a line drawn outside the graph.

The defaults are ‘noclip points‘, ‘clip one‘, and ‘noclip two‘.

To check the state of all forms of clipping, use
show clip

For backward compatibility with older versions, the following forms
are also permitted:

set clip
set noclip

clip
is synonymous with ‘set clip points‘; ‘set noclip‘ turns off all

three types of clipping.

1.128 gnuplot.guide/cntrparam

cntrparam

cntrparam
controls the generation of contours and their smoothness for

a contour plot.
contour
displays current settings of

cntrparam
as

well as
contour
.

Syntax:
set cntrparam { {linear | cubicspline | bspline}

{ points <n>} { order <n> }
{ levels auto {<n>} | <n>

| discrete <z1> {,<z2>{,<z3>...}}
| incremental <start>, <incr> {,<end>}

}
}

show contour

This command has two functions. First, it sets the values of z for
which contour points are to be determined (by linear interpolation
between data points or function isosamples.) Second, it controls the

gnuplot 94 / 236

way contours are drawn between the points determined to be of equal z.
<n> should be an integral constant expression and <z1>, <z2> ... any
constant expressions. The parameters are:

‘linear‘, ‘cubicspline‘, ‘bspline‘--Controls type of approximation or
interpolation. If ‘linear‘, then straight line segments connect points
of equal z magnitude. If ‘cubicspline‘, then piecewise-linear contours
are interpolated between the same equal z points to form somewhat
smoother contours, but which may undulate. If ‘bspline‘, a
guaranteed-smoother curve is drawn, which only approximates the
position of the points of equal-z.

‘points‘--Eventually all drawings are done with piecewise-linear
strokes. This number controls the number of line segments used to
approximate the ‘bspline‘ or ‘cubicspline‘ curve. Number of
cubicspline or bspline segments (strokes) = ‘points‘ * number of linear
segments.

‘order‘--Order of the bspline approximation to be used. The bigger
this order is, the smoother the resulting contour. (Of course, higher
order bspline curves will move further away from the original piecewise
linear data.) This option is relevant for ‘bspline‘ mode only.
Allowed values are integers in the range from 2 (linear) to 10.

‘levels‘-- Selection of contour levels, controlled by ‘auto‘
(default), ‘discrete‘, ‘incremental‘, and <n>, number of contour
levels, limited to

MAX_DISCRETE_LEVELS as defined in plot.h (30 is standard.)

For ‘auto‘, <n> specifies a nominal number of levels; the actual
number will be adjusted to give simple labels. If the surface is
bounded by zmin and zmax, contours will be generated at integer
multiples of dz between zmin and zmax, where dz is 1, 2, or 5 times
some power of ten (like the step between two tic marks).

For ‘levels discrete‘, contours will be generated at z = <z1>, <z2>
... as specified; the number of discrete levels sets the number of
contour levels. In ‘discrete‘ mode, any ‘set cntrparms levels <n>‘ are
ignored.

For ‘incremental‘, contours are generated at values of z beginning
at <start> and increasing by <increment>, until the number of contours
is reached. <end> is used to determine the number of contour levels,
which will be changed by any subsequent ‘set cntrparam levels <n>‘.

If the command
cntrparam
is given without any arguments specified,

the defaults are used: linear, 5 points, order 4, 5 auto levels.

Examples:
set cntrparam bspline
set cntrparam points 7
set cntrparam order 10

To select levels automatically, 5 if the level increment criteria
are met:

gnuplot 95 / 236

set cntrparam levels auto 5

To specify discrete levels at .1, .37, and .9:
set cntrparam levels discrete .1,1/exp(1),.9

To specify levels from 0 to 4 with increment 1:
set cntrparam levels incremental 0,1,4

To set the number of levels to 10 (changing an incremental end or
possibly the number of auto levels):

set cntrparam levels 10

To set the start and increment while retaining the number of levels:
set cntrparam levels incremental 100,50

See also
contour
for control of where the contours are drawn, and

clabel
for control of the format of the contour labels and linetypes.

Contours Demo (http://www.gnuplot.vt.edu/gnuplot/gpdocs/contours.html)
and contours with User Defined Levels. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/ ←↩

discrete.html)

1.129 gnuplot.guide/contour

contour

contour
enables contour drawing for surfaces. This option is available

for ‘splot‘ only.

Syntax:
set contour {base | surface | both}
set nocontour
show contour

The three options specify where to draw the contours: ‘base‘ draws
the contours on the grid base where the x/ytics are placed,

surface
draws the contours on the surfaces themselves, and ‘both‘ draws ←↩

the
contours on both the base and the surface. If no option is provided,
the default is ‘base‘.

See also
cntrparam
for the parameters that affect the drawing of

contours, and
clabel

gnuplot 96 / 236

for control of labelling of the contours.

The surface can be switched off (see
surface
), giving a contour-only

graph. Though it is possible to use
size
to enlarge the plot to fill

the screen, more control over the output format can be obtained by
writing the contour information to a file, and rereading it as a 2-d
datafile plot:

set nosurface
set contour
set cntrparam ...
set term table
set out ’filename’
splot ...
set out
contour info now in filename
set term <whatever>
plot ’filename’

In order to draw contours, the data should be organized as "grid
data". In such a file all the points for a single y-isoline are
listed, then all the points for the next y-isoline, and so on. A
single blank line (a line containing no characters other than blank
spaces and a carriage return and/or a line feed) separates one
y-isoline from the next. See also ‘splot datafile‘.

If contours are desired from non-grid data,
dgrid3d
can be used to

create an appropriate grid. See
dgrid3d
for more information.

Contours Demo (http://www.gnuplot.vt.edu/gnuplot/gpdocs/contours.html)
and contours with User Defined Levels. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/ ←↩

discrete.html)

1.130 gnuplot.guide/data_style

data style

The
style
command changes the default plotting style for data plots.

Syntax:
set data style <style-choice>
show data style

gnuplot 97 / 236

See
style
for the choices. If no choice is given, the choices are

listed.
style
shows the current default data plotting style.

1.131 gnuplot.guide/dgrid3d

dgrid3d

The
dgrid3d
command enables, and can set parameters for, non-grid

to grid data mapping.

Syntax:
set dgrid3d {<row_size>} {,{<col_size>} {,<norm>}}
set nodgrid3d
show dgrid3d

By default
dgrid3d
is disabled. When enabled, 3-d data read from a

file are always treated as a scattered data set. A grid with
dimensions derived from a bounding box of the scattered data and size
as specified by the row/col_size parameters is created for plotting and
contouring. The grid is equally spaced in x (rows) and in y (columns);
the z values are computed as weighted averages of the scattered points’
z values.

The third parameter, norm, controls the weighting: Each data point
is weighted inversely by its distance from the grid point raised to the
norm power. (Actually, the weights are given by the inverse of dx^norm
+ dy^norm, where dx and dy are the components of the separation of the
grid point from each data point. For some norms that are powers of
two, specifically 4, 8, and 16, the computation is optimized by using
the Euclidean distance in the weight calculation, (dx^2+dx^2)^norm/2.
However, any non-negative integer can be used.)

The closer the data point is to a grid point, the more effect it has
on that grid point and the larger the value of norm the less effect more
distant data points have on that grid point.

The
dgrid3d
option is a simple low pass filter that converts

scattered data to a grid data set. More sophisticated approaches to
this problem exist and should be used to preprocess the data outside
‘gnuplot‘ if this simple solution is found inadequate.

(The z values are found by weighting all data points, not by

gnuplot 98 / 236

interpolating between nearby data points; also edge effects may
produce unexpected and/or undesired results. In some cases, small norm
values produce a grid point reflecting the average of distant data
points rather than a local average, while large values of norm may
produce "steps" with several grid points having the same value as the
closest data point, rather than making a smooth transition between
adjacent data points. Some areas of a grid may be filled by
extrapolation, to an arbitrary boundary condition. The variables are
not normalized; consequently the units used for x and y will affect the
relative weights of points in the x and y directions.)

Examples:
set dgrid3d 10,10,1 # defaults
set dgrid3d ,,4

The first specifies that a grid of size 10 by 10 is to be
constructed using a norm value of 1 in the weight computation. The
second only modifies the norm, changing it to 4.
Dgrid3d Demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/scatter.html)

1.132 gnuplot.guide/dummy

dummy

The
dummy
command changes the default dummy variable names.

Syntax:
set dummy {<dummy-var>} {,<dummy-var>}
show dummy

By default, ‘gnuplot‘ assumes that the independent, or "dummy",
variable for the

plot
command is "t" if in parametric or polar mode,

or "x" otherwise. Similarly the independent variables for the ‘splot‘
command are "u" and "v" in parametric mode (‘splot‘ cannot be used in
polar mode), or "x" and "y" otherwise.

It may be more convenient to call a dummy variable by a more
physically meaningful or conventional name. For example, when plotting
time functions:

set dummy t
plot sin(t), cos(t)

At least one dummy variable must be set on the command;
dummy
by

itself will generate an error message.

gnuplot 99 / 236

Examples:
set dummy u,v
set dummy ,s

The second example sets the second variable to s.

1.133 gnuplot.guide/encoding

encoding

The
encoding
command selects a character encoding. Valid values are

‘default‘, which tells a terminal to use its default; ‘iso_8859_1‘
(known in the PostScript world as ‘ISO-Latin1‘), which is used on many
Unix workstations and with MS-Windows; ‘cp850‘, for OS/2; and ‘cp437‘,
for MS-DOS.

Syntax:
set encoding {<value>}
show encoding

Note that encoding is not supported by all terminal drivers and that
the device must be able to produce the desired non-standard characters.

1.134 gnuplot.guide/format

format

The format of the tic-mark labels can be set with the ‘set format‘
command.

Syntax:
set format {<axes>} {"<format-string>"}
set format {<axes>} {’<format-string>’}
show format

where <axes> is either ‘x‘, ‘y‘, ‘z‘, ‘xy‘, ‘x2‘, ‘y2‘ or nothing
(which is the same as ‘xy‘). The length of the string representing a
tic mark (after formatting with ’printf’) is restricted to 100
characters. If the format string is omitted, the format will be
returned to the default "%g". For LaTeX users, the format "$%g$" is
often desirable. If the empty string "" is used, no label will be
plotted with each tic, though the tic mark will still be plotted. To
eliminate all tic marks, use ‘set noxtics‘ or ‘set noytics‘.

gnuplot 100 / 236

Newline (\n) is accepted in the format string. Use double-quotes
rather than single-quotes to enable such interpretation. See also
‘syntax‘.

The default format for both axes is "%g", but other formats such as
"%.2f" or "%3.0em" are often desirable. Anything accepted by ’printf’
when given a double precision number, and accepted by the terminal,
will work. Some other options have been added. If the format string
looks like a floating point format, then ‘gnuplot‘ tries to construct a
reasonable format.

Characters not preceded by "%" are printed verbatim. Thus you can
include spaces and labels in your format string, such as "%g m", which
will put " m" after each number. If you want "%" itself, double it:
"%g %%".

See also
xtics
for more information about tic labels.

See demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/electron.html)

format_specifiers

time-date_specifiers

1.135 gnuplot.guide/format_specifiers

format specifiers
.................

The acceptable formats (if not in time/date mode) are:

Format Explanation
%f floating point notation
%e or %E exponential notation; an "e" or "E" before the power
%g or %G the shorter of %e (or %E) and %f
%x or %X hex
%o or %O octal
%t mantissa to base 10
%l mantissa to base of current logscale
%s mantissa to base of current logscale; scientific power
%T power to base 10
%L power to base of current logscale
%S scientific power
%c character replacement for scientific power
%P multiple of pi

A ’scientific’ power is one such that the exponent is a multiple of
three. Character replacement of scientific powers (‘"%c"‘) has been
implemented for powers in the range -18 to +18. For numbers outside of
this range the format reverts to exponential.

gnuplot 101 / 236

Other acceptable modifiers (which come after the "%" but before the
format specifier) are "-", which left-justifies the number; "+", which
forces all numbers to be explicitly signed; "#", which places a decimal
point after floats that have only zeroes following the decimal point; a
positive integer, which defines the field width; "0" (the digit, not
the letter) immediately preceding the field width, which indicates that
leading zeroes are to be used instead of leading blanks; and a decimal
point followed by a non-negative integer, which defines the precision
(the minimum number of digits of an integer, or the number of digits
following the decimal point of a float).

Some releases of ’printf’ may not support all of these modifiers but
may also support others; in case of doubt, check the appropriate
documentation and then experiment.

Examples:
set format y "%t"; set ytics (5,10) # "5.0" and "1.0"
set format y "%s"; set ytics (500,1000) # "500" and "1.0"
set format y "+-12.3f"; set ytics(12345) # "+12345.000 "
set format y "%.2t*10^%+03T"; set ytic(12345)# "1.23*10^+04"
set format y "%s*10^{%S}"; set ytic(12345) # "12.345*10^{3}"
set format y "%s %cg"; set ytic(12345) # "12.345 kg"
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0P%%"; set ytic(50) # "50%"

set log y 2; set format y ’%l’; set ytics (1,2,3)
#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 2^1)

There are some problem cases that arise when numbers like 9.999 are
printed with a format that requires both rounding and a power.

If the data type for the axis is time/date, the format string must
contain valid codes for the ’strftime’ function (outside of ‘gnuplot‘,
type "man strftime"). See

timefmt
for a list of the allowed input

format codes.

1.136 gnuplot.guide/time-date_specifiers

time/date specifiers
....................

In time/date mode, the acceptable formats are:

Format Explanation
%a abbreviated name of day of the week
%A full name of day of the week
%b or %h abbreviated name of the month
%B full name of the month
%d day of the month, 1--31
%D shorthand for "%m/%d/%y"
%H or %k hour, 0--24

gnuplot 102 / 236

%I or %l hour, 0--12
%j day of the year, 1--366
%m month, 1--12
%M minute, 0--60
%p "am" or "pm"
%r shorthand for "%I:%M:%S %p"
%R shorthand for %H:%M"
%S second, 0--60
%T shorthand for "%H:%M:%S"
%U week of the year (week starts on Sunday)
%w day of the week, 0--6 (Sunday = 0)
%W week of the year (week starts on Monday)
%y year, 0-99
%Y year, 4-digit

Except for the non-numerical formats, these may be preceded by a "0"
("zero", not "oh") to pad the field length with leading zeroes, and a
positive digit, to define the minimum field width (which will be
overridden if the specified width is not large enough to contain the
number). There is a 24-character limit to the length of the printed
text; longer strings will be truncated.

Examples:

Suppose the text is "76/12/25 23:11:11". Then
set format x # defaults to "12/25/76" \n "23:11"
set format x "%A, %d %b %Y" # "Saturday, 25 Dec 1976"
set format x "%r %d" # "11:11:11 pm 12/25/76"

Suppose the text is "98/07/06 05:04:03". Then
set format x "%1y/%2m/%3d %01H:%02M:%03S" # "98/ 7/ 6 5:04:003"

1.137 gnuplot.guide/function_style

function style

The
style
command changes the default plotting style for function

plots.

Syntax:
set function style <style-choice>
show function style

See
style
for the choices. If no choice is given, the choices are

listed.
style
shows the current default function plotting style.

gnuplot 103 / 236

1.138 gnuplot.guide/functions

functions

The
functions
command lists all user-defined functions and their

definitions.

Syntax:
show functions

For information about the definition and usage of functions in
‘gnuplot‘, please see ‘expressions‘.
Splines as User Defined Functions. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/ ←↩

spline.html)
Use of functions and complex variables for airfoils (http://www.gnuplot.vt.edu/ ←↩

gnuplot/gpdocs/airfoil.html)

1.139 gnuplot.guide/grid

grid

The ‘set grid‘ command allows grid lines to be drawn on the plot.

Syntax:
set grid {{no}{m}xtics} {{no}{m}ytics} {{no}{m}ztics}

{{no}{m}x2tics} {{no}{m}y2tics}
{polar {<angle>}}
{ {linestyle <major_linestyle>}

| {linetype | lt <major_linetype>}
{linewidth | lw <major_linewidth>}

{ , {linestyle | ls <minor_linestyle>}
| {linetype | lt <minor_linetype>}

{linewidth | lw <minor_linewidth>} } }
set nogrid
show grid

The grid can be enabled and disabled for the major and/or minor tic
marks on any axis, and the linetype and linewidth can be specified for
major and minor grid lines, also via a predefined linestyle, as far as
the active terminal driver supports this.

Additionally, a polar grid can be selected for 2-d plots--circles
are drawn to intersect the selected tics, and radial lines are drawn at
definable intervals. (The interval is given in degrees or radians

gnuplot 104 / 236

,depending on the
angles
setting.) Note that a polar grid is no

longer automatically generated in polar mode.

The pertinent tics must be enabled before ‘set grid‘ can draw them;
‘gnuplot‘ will quietly ignore instructions to draw grid lines at
non-existent tics, but they will appear if the tics are subsequently
enabled.

If no linetype is specified for the minor gridlines, the same
linetype as the major gridlines is used. The default polar angle is 30
degrees.

By default, grid lines are drawn with half the usual linewidth. The
major and minor linewidth specifiers scale this default value; for
example, ‘set grid lw .5‘ will draw grid lines with one quarter the
usual linewidth.

Z grid lines are drawn on the back of the plot. This looks better
if a partial box is drawn around the plot--see

border
.

1.140 gnuplot.guide/hidden3d

hidden3d

The
hidden3d
command enables hidden line removal for surface

plotting (see ‘splot‘). Some optional features of the underlying
algorithm can also be controlled using this command.

Syntax:
set hidden3d {defaults} |

{ {{offset <offset>} | {nooffset}}
{trianglepattern <bitpattern>}
{{undefined <level>} | {noundefined}}
{{no}altdiagonal}
{{no}bentover} }

set nohidden3d
show hidden3d

In contrast to the usual display in gnuplot, hidden line removal
actually treats the given function or data grids as real surfaces that
can’t be seen through, so parts behind the surface will be hidden by
it. For this to be possible, the surface needs to have ’grid
structure’ (see ‘splot datafile‘ about this), and it has to be drawn
‘with lines‘ or

linespoints
.

gnuplot 105 / 236

When
hidden3d
is set, both the hidden portion of the surface and

possibly its contours drawn on the base (see
contour
) as well as the

grid will be hidden. Each surface has its hidden parts removed with
respect to itself and to other surfaces, if more than one surface is
plotted. Contours drawn on the surface (

surface
) don’t work. Labels

and arrows are always visible and are unaffected. The key is also
never hidden by the surface.

Functions are evaluated at isoline intersections. The algorithm
interpolates linearly between function points or data points when
determining the visible line segments. This means that the appearance
of a function may be different when plotted with

hidden3d
than when

plotted with ‘nohidden3d‘ because in the latter case functions are
evaluated at each sample. Please see

samples
and

isosamples
for

discussion of the difference.

The algorithm used to remove the hidden parts of the surfaces has
some additional features controllable by this command. Specifying
‘defaults‘ will set them all to their default settings, as detailed
below. If ‘defaults‘ is not given, only explicitly specified options
will be influenced: all others will keep their previous values, so you
can turn on/off hidden line removal via ‘set {no}hidden3d‘, without
modifying the set of options you chose.

The first option, ‘offset‘, influences the linestyle used for lines
on the ’back’ side. Normally, they are drawn in a linestyle one index
number higher than the one used for the front, to make the two sides of
the surface distinguishable. You can specify a different line style
offset to add instead of the default 1, by ‘offset <offset>‘. Option
‘nooffset‘ stands for ‘offset 0‘, making the two sides of the surface
use the same linestyle.

Next comes the option ‘trianglepattern <bitpattern>‘. <bitpattern>
must be a number between 0 and 7, interpreted as a bit pattern. Each
bit determines the visibility of one edge of the triangles each surface
is split up into. Bit 0 is for the ’horizontal’ edges of the grid, Bit
1 for the ’vertical’ ones, and Bit 2 for the diagonals that split each
cell of the original grid into two triangles. The default pattern is
3, making all horizontal and vertical lines visible, but not the
diagonals. You may want to choose 7 to see those diagonals as well.

The ‘undefined <level>‘ option lets you decide what the algorithm is
to do with data points that are undefined (missing data, or undefined
function values), or exceed the given x-, y- or z-ranges. Such points

gnuplot 106 / 236

can either be plotted nevertheless, or taken out of the input data set.
All surface elements touching a point that is taken out will be taken
out as well, thus creating a hole in the surface. If <level> = 3,
equivalent to option ‘noundefined‘, no points will be thrown away at
all. This may produce all kinds of problems elsewhere, so you should
avoid this. <level> = 2 will throw away undefined points, but keep the
out-of-range ones. <level> = 1, the default, will get rid of
out-of-range points as well.

By specifying ‘noaltdiagonal‘, you can override the default handling
of a special case can occur if ‘undefined‘ is active (i.e. <level> is
not 3). Each cell of the grid-structured input surface will be divided
in two triangles along one of its diagonals. Normally, all these
diagonals have the same orientation relative to the grid. If exactly
one of the four cell corners is excluded by the ‘undefined‘ handler,
and this is on the usual diagonal, both triangles will be excluded.
However if the default setting of ‘altdiagonal‘ is active, the other
diagonal will be chosen for this cell instead, minimizing the size of
the hole in the surface.

The ‘bentover‘ option controls what happens to another special case,
this time in conjunction with the ‘trianglepattern‘. For rather
crumply surfaces, it can happen that the two triangles a surface cell
is divided into are seen from opposite sides (i.e. the original
quadrangle is ’bent over’), as illustrated in the following ASCII art:

C----B
original quadrangle: A--B displayed quadrangle: |\ |

("set view 0,0") | /| ("set view 75,75" perhaps) | \ |
|/ | | \ |
C--D | \|

A D

If the diagonal edges of the surface cells aren’t generally made
visible by bit 2 of the <bitpattern> there, the edge CB above wouldn’t
be drawn at all, normally, making the resulting display hard to
understand. Therefore, the default option of ‘bentover‘ will turn it
visible in this case. If you don’t want that, you may choose
‘nobentover‘ instead.
Hidden Line Removal Demo (http://www.gnuplot.vt.edu/gnuplot/gpdocs/hidden.html) ←↩

and
Complex Hidden Line Demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/singulr.html)

1.141 gnuplot.guide/isosamples

isosamples

The isoline density (grid) for plotting functions as surfaces may be
changed by the

isosamples
command.

gnuplot 107 / 236

Syntax:
set isosamples <iso_1> {,<iso_2>}
show isosamples

Each function surface plot will have <iso_1> iso-u lines and <iso_2>
iso-v lines. If you only specify <iso_1>, <iso_2> will be set to the
same value as <iso_1>. By default, sampling is set to 10 isolines per
u or v axis. A higher sampling rate will produce more accurate plots,
but will take longer. These parameters have no effect on data file
plotting.

An isoline is a curve parameterized by one of the surface parameters
while the other surface parameter is fixed. Isolines provide a simple
means to display a surface. By fixing the u parameter of surface
s(u,v), the iso-u lines of the form c(v) = s(u0,v) are produced, and by
fixing the v parameter, the iso-v lines of the form c(u) = s(u,v0) are
produced.

When a function surface plot is being done without the removal of
hidden lines,

samples
controls the number of points sampled along each

isoline; see
samples
and

hidden3d
. The contour algorithm assumes

that a function sample occurs at each isoline intersection, so change
in

samples
as well as

isosamples
may be desired when changing the

resolution of a function surface/contour.

1.142 gnuplot.guide/key

key

The
key
enables a key (or legend) describing plots on a plot.

The contents of the key, i.e., the names given to each plotted data
set and function and samples of the lines and/or symbols used to
represent them, are determined by the ‘title‘ and

with
options of the

{‘s‘}
plot
command. Please see ‘plot title‘ and

with

gnuplot 108 / 236

for more
information.

Syntax:
set key { left | right | top | bottom | outside | below

| <position>}
{Left | Right} {{no}reverse}
{samplen <sample_length>} {spacing <vertical_spacing>}
{width <width_increment>}
{title "<text>"}
{{no}box { {linestyle | ls <line_style>}

| {linetype | lt <line_type>}
{linewidth | lw <line_width>}}}

set nokey
show key

By default the key is placed in the upper right corner of the graph.
The keywords ‘left‘, ‘right‘, ‘top‘, ‘bottom‘, ‘outside‘ and ‘below‘
may be used to place the key in the other corners inside the graph or
to the right (outside) or below the graph. They may be given alone or
combined.

Justification of the labels within the key is controlled by ‘Left‘
or ‘Right‘ (default is ‘Right‘). The text and sample can be reversed
(‘reverse‘) and a box can be drawn around the key (‘box {...}‘) in a
specified ‘linetype‘ and ‘linewidth‘, or a user-defined

linestyle
.

Note that not all terminal drivers support linewidth selection, though.

The length of the sample line can be controlled by ‘samplen‘. The
sample length is computed as the sum of the tic length and
<sample_length> times the character width. ‘samplen‘ also affects the
positions of point samples in the key since these are drawn at the
midpoint of the sample line, even if it is not drawn. <sample_length>
must be an integer.

The vertical spacing between lines is controlled by ‘spacing‘. The
spacing is set equal to the product of the pointsize, the vertical tic
size, and <vertical_spacing>. The program will guarantee that the
vertical spacing is no smaller than the character height.

The <width_increment> is a number of character widths to be added to
or subtracted from the length of the string. This is useful only when
you are putting a box around the key and you are using control
characters in the text. ‘gnuplot‘ simply counts the number of
characters in the string when computing the box width; this allows you
to correct it.

A title can be put on the key (‘title "<text>"‘)--see also ‘syntax‘
for the distinction between text in single- or double-quotes. The key
title uses the same justification as do the plot titles.

The defaults for
key
are ‘right‘, ‘top‘, ‘Right‘, ‘noreverse‘,

‘samplen 4‘, ‘spacing 1.25‘, ‘title ""‘, and ‘nobox‘. The default

gnuplot 109 / 236

<linetype> is the same as that used for the plot borders. Entering

key
with no options returns the key to its default configuration.

The <position> can be a simple x,y,z as in previous versions, but
these can be preceded by one of four keywords (‘first‘, ‘second‘,
‘graph‘, ‘screen‘) which selects the coordinate system in which the
position is specified. See ‘coordinates‘ for more details.

The key is drawn as a sequence of lines, with one plot described on
each line. On the right-hand side (or the left-hand side, if ‘reverse‘
is selected) of each line is a representation that attempts to mimic
the way the curve is plotted. On the other side of each line is the
text description (the line title), obtained from the

plot
command.

The lines are vertically arranged so that an imaginary straight line
divides the left- and right-hand sides of the key. It is the
coordinates of the top of this line that are specified with the

key
command. In a
plot
, only the x and y coordinates are used to specify

the line position. For a ‘splot‘, x, y and z are all used as a 3-d
location mapped using the same mapping as the graph itself to form the
required 2-d screen position of the imaginary line.

Some or all of the key may be outside of the graph boundary,
although this may interfere with other labels and may cause an error on
some devices. If you use the keywords ‘outside‘ or ‘below‘, ‘gnuplot‘
makes space for the keys and the graph becomes smaller. Putting keys
outside to the right, they occupy as few columns as possible, and
putting them below, as many columns as possible (depending of the
length of the labels), thus stealing as little space from the graph as
possible.

When using the TeX or PostScript drivers, or similar drivers where
formatting information is embedded in the string, ‘gnuplot‘ is unable
to calculate correctly the width of the string for key positioning. If
the key is to be positioned at the left, it may be convenient to use
the combination ‘set key left Left reverse‘. The box and gap in the
grid will be the width of the literal string.

If ‘splot‘ is being used to draw contours, the contour labels will
be listed in the key. If the alignment of these labels is poor or a
different number of decimal places is desired, the label format can be
specified. See

clabel
for details.

Examples:

This places the key at the default location:
set key

This disables the key:

gnuplot 110 / 236

set nokey

This places a key at coordinates 2,3.5,2 in the default (first)
coordinate system:

set key 2,3.5,2

This places the key below the graph:
set key below

This places the key in the bottom left corner, left-justifies the
text, gives it a title, and draws a box around it in linetype 3:

set key left bottom Left title ’Legend’ box 3

1.143 gnuplot.guide/label

label

Arbitrary labels can be placed on the plot using the
label
command.

Syntax:
set label {<tag>} {"<label_text>"} {at <position>}

{<justification>} {{no}rotate} {font "<name><,size>"}
set nolabel {<tag>}
show label

The <position> is specified by either x,y or x,y,z, and may be
preceded by ‘first‘, ‘second‘, ‘graph‘, or ‘screen‘ to select the
coordinate system. See ‘coordinates‘ for details.

The tag is an integer that is used to identify the label. If no
<tag> is given, the lowest unused tag value is assigned automatically.
The tag can be used to delete or modify a specific label. To change
any attribute of an existing label, use the

label
command with the

appropriate tag, and specify the parts of the label to be changed.

By default, the text is placed flush left against the point x,y,z.
To adjust the way the label is positioned with respect to the point
x,y,z, add the parameter <justification>, which may be ‘left‘, ‘right‘
or ‘center‘, indicating that the point is to be at the left, right or
center of the text. Labels outside the plotted boundaries are
permitted but may interfere with axis labels or other text.

If ‘rotate‘ is given, the label is written vertically (if the
terminal can do so, of course).

If one (or more) axis is timeseries, the appropriate coordinate
should be given as a quoted time string according to the

timefmt

gnuplot 111 / 236

format string. See
xdata
and

timefmt
.

The EEPIC, Imagen, LaTeX, and TPIC drivers allow \\ in a string to
specify a newline.

Examples:

To set a label at (1,2) to "y=x", use:
set label "y=x" at 1,2

To set a Sigma of size 24, from the Symbol font set, at the center of
the graph, use:

set label "S" at graph 0.5,0.5 center font "Symbol,24"

To set a label "y=x^2" with the right of the text at (2,3,4), and
tag the label as number 3, use:

set label 3 "y=x^2" at 2,3,4 right

To change the preceding label to center justification, use:
set label 3 center

To delete label number 2, use:
set nolabel 2

To delete all labels, use:
set nolabel

To show all labels (in tag order), use:
show label

To set a label on a graph with a timeseries on the x axis, use, for
example:

set timefmt "%d/%m/%y,%H:%M"
set label "Harvest" at "25/8/93",1

1.144 gnuplot.guide/linestyle

linestyle

Each terminal has a default set of line and point types, which can
be seen by using the command

test
.
linestyle
defines a set of line

types and widths and point types and sizes so that you can refer to
them later by an index instead of repeating all the information at each
invocation.

gnuplot 112 / 236

Syntax:
set linestyle <index> {linetype | lt <line_type>}

{linewidth | lw <line_width>}
{pointtype | pt <point_type>}
{pointsize | ps <point_size>}

set nolinestyle
show linestyle

The line and point types are taken from the default types for the
terminal currently in use. The line width and point size are
multipliers for the default width and size (but note that <point_size>
here is unaffected by the multiplier given on ’set pointsize’).

The defaults for the line and point types is the index. The
defaults for the width and size are both unity.

Linestyles created by this mechanism do not replace the default
styles; both may be used.

Not all terminals support the ‘linewidth‘ and
pointsize
features; if

not supported, the option will be ignored.

Note that this feature is not completely implemented; linestyles
defined by this mechanism may be used with ’plot’, ’splot’, ’replot’,
and ’set arrow’, but not by other commands that allow the default index
to be used, such as ’set grid’.

Example: Suppose that the default lines for indices 1, 2, and 3 are
red, green, and blue, respectively, and the default point shapes for
the same indices are a square, a cross, and a triangle, respectively.
Then

set linestyle 1 lt 2 lw 2 pt 3 ps 0.5

defines a new linestyle that is green and twice the default width
and a new pointstyle that is a half-sized triangle. The commands

set function style lines
plot f(x) lt 3, g(x) ls 1

will create a plot of f(x) using the default blue line and a plot of
g(x) using the user-defined wide green line. Similarly the commands

set function style linespoints
plot p(x) lt 1 pt 3, q(x) ls 1

will create a plot of f(x) using the default triangles connected by
a red line and q(x) using small triangles connected by a green line.

gnuplot 113 / 236

1.145 gnuplot.guide/lmargin

lmargin

The command
lmargin
sets the size of the left margin. Please see

margin
for details.

1.146 gnuplot.guide/locale

locale

The
locale
setting determines the language with which

‘{x,y,z}{d,m}tics‘ will write the days and months.

Syntax:
set locale {"<locale>"}

<locale> may be any language designation acceptable to your
installation. See your system documentation for the available options.
The default value is determined from the LANG environment variable.

1.147 gnuplot.guide/logscale

logscale

Log scaling may be set on the x, y, z, x2 and/or y2 axes.

Syntax:
set logscale <axes> <base>
set nologscale <axes>
show logscale

where <axes> may be any combinations of ‘x‘, ‘y‘, and ‘z‘, in any
order, or ‘x2‘ or ‘y2‘ and where <base> is the base of the log scaling.
If <base> is not given, then 10 is assumed. If <axes> is not given,
then all axes are assumed. ‘set nologscale‘ turns off log scaling for
the specified axes.

Examples:

gnuplot 114 / 236

To enable log scaling in both x and z axes:
set logscale xz

To enable scaling log base 2 of the y axis:
set logscale y 2

To disable z axis log scaling:
set nologscale z

1.148 gnuplot.guide/mapping

mapping

If data are provided to ‘splot‘ in spherical or cylindrical
coordinates, the

mapping
command should be used to instruct ‘gnuplot‘

how to interpret them.

Syntax:
set mapping {cartesian | spherical | cylindrical}

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three
columns (or

using
entries). The first two are interpreted as the

polar and azimuthal angles theta and phi (in the units specified by

angles
). The radius r is taken from the third column if there is

one, or is set to unity if there is no third column. The mapping is:

x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)

Note that this is a "geographic" spherical system, rather than a
"polar" one.

For a cylindrical coordinate system, the data again occupy two or
three columns. The first two are interpreted as theta (in the units
specified by

angles
) and z. The radius is either taken from the third

column or set to unity, as in the spherical case. The mapping is:

x = r * cos(theta)
y = r * sin(theta)
z = z

gnuplot 115 / 236

The effects of
mapping
can be duplicated with the

using
filter on

the ‘splot‘ command, but
mapping
may be more convenient if many data

files are to be processed. However even if
mapping
is used,

using
may still be necessary if the data in the file are not in the ←↩

required
order.

mapping
has no effect on

plot
.

Mapping Demos. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/world.html)

1.149 gnuplot.guide/margin

margin

The computed margins can be overridden by the
margin
commands.

margin
shows the current settings.

Syntax:
set bmargin {<margin>}
set lmargin {<margin>}
set rmargin {<margin>}
set tmargin {<margin>}
show margin

The units of <margin> are character heights or widths, as
appropriate. A positive value defines the absolute size of the margin.
A negative value (or none) causes ‘gnuplot‘ to revert to the computed
value.

Normally the margins of a plot are automatically calculated based on
tics, tic labels, axis labels, the plot title, the timestamp and the
size of the key if it is outside the borders. If, however, tics are
attached to the axes (‘set xtics axis‘, for example), neither the tics
themselves nor their labels will be included in either the margin
calculation or the calculation of the positions of other text to be

gnuplot 116 / 236

written in the margin. This can lead to tic labels overwriting other
text if the axis is very close to the border.

1.150 gnuplot.guide/missing

missing

The
missing
command allows you to tell ‘gnuplot‘ what character is

used in a data file to denote missing data.

Syntax:
set missing {"<character>"}
show missing

Example:
set missing "?"

would mean that, when plotting a file containing

1 1
2 ?
3 2

the middle line would be ignored.

There is no default character for
missing
.

1.151 gnuplot.guide/multiplot

multiplot

The command
multiplot
places ‘gnuplot‘ in the multiplot mode, in

which several plots are placed on the same page, window, or screen.

Syntax:
set multiplot
set nomultiplot

For some terminals, no plot is displayed until the command ‘set
nomultiplot‘ is given, which causes the entire page to be drawn and

gnuplot 117 / 236

then returns ‘gnuplot‘ to its normal single-plot mode. For other
terminals, each separate

plot
command produces a plot, but the screen

may not be cleared between plots.

Any labels or arrows that have been defined will be drawn for each
plot according to the current size and origin (unless their coordinates
are defined in the ‘screen‘ system). Just about everything else that
can be ‘set‘ is applied to each plot, too. If you want something to
appear only once on the page, for instance a single time stamp, you’ll
need to put a ‘set time‘/‘set notime‘ pair around one of the

plot
,

‘splot‘ or
replot
commands within the

multiplot
/‘set nomultiplot‘

block.

The commands
origin
and

size
must be used to correctly position

each plot; see
origin
and

size
for details of their usage.

Example:
set size 0.7,0.7
set origin 0.1,0.1
set multiplot
set size 0.4,0.4
set origin 0.1,0.1
plot sin(x)
set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)
set nomultiplot

displays a plot of cos(x) stacked above a plot of sin(x). Note the
initial

size
and

origin
. While these are not always required, their

inclusion is recommended. Some terminal drivers require that bounding
box information be available before any plots can be made, and the form
given above guarantees that the bounding box will include the entire
plot array rather than just the bounding box of the first plot.

size

gnuplot 118 / 236

and
origin
refer to the entire plotting area used for each plot.

If you want to have the axes themselves line up, you can guarantee
that the margins are the same size with the

margin
commands. See

margin
for their use. Note that the margin settings are absolute, in

character units, so the appearance of the graph in the remaining space
will depend on the screen size of the display device, e.g., perhaps
quite different on a video display and a printer.
See demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/multiplt.html)

1.152 gnuplot.guide/mx2tics

mx2tics

Minor tic marks along the x2 (top) axis are controlled by
mx2tics
.

Please see
mxtics
.

1.153 gnuplot.guide/mxtics

mxtics

Minor tic marks along the x axis are controlled by
mxtics
. They

can be turned off with ‘set nomxtics‘. Similar commands control minor
tics along the other axes.

Syntax:
set mxtics {<freq> | default}
set nomxtics
show mxtics

The same syntax applies to
mytics
,
mztics
,

gnuplot 119 / 236

mx2tics
and

my2tics
.

<freq> is the number of sub-intervals (NOT the number of minor tics)
between major tics (ten is the default for a linear axis, so there are
nine minor tics between major tics). Selecting ‘default‘ will return
the number of minor ticks to its default value.

If the axis is logarithmic, the number of sub-intervals will be set
to a reasonable number by default (based upon the length of a decade).
This will be overridden if <freq> is given. However the usual minor
tics (2, 3, ..., 8, 9 between 1 and 10, for example) are obtained by
setting <freq> to 10, even though there are but nine sub-intervals.

Minor tics can be used only with uniformly spaced major tics. Since
major tics can be placed arbitrarily by ‘set {x|x2|y|y2|z}tics‘, minor
tics cannot be used if major tics are explicitly ‘set‘.

By default, minor tics are off for linear axes and on for
logarithmic axes. They inherit the settings for ‘axis|border‘ and
‘{no}mirror‘ specified for the major tics. Please see

xtics
for

information about these.

1.154 gnuplot.guide/my2tics

my2tics

Minor tic marks along the y2 (right-hand) axis are controlled by

my2tics
. Please see
mxtics
.

1.155 gnuplot.guide/mytics

mytics

Minor tic marks along the y axis are controlled by
mytics
. Please

see

gnuplot 120 / 236

mxtics
.

1.156 gnuplot.guide/mztics

mztics

Minor tic marks along the z axis are controlled by
mztics
. Please

see
mxtics
.

1.157 gnuplot.guide/offsets

offsets

Offsets provide a mechanism to put a boundary around the data inside
of an autoscaled graph.

Syntax:
set offsets <left>, <right>, <top>, <bottom>
set nooffsets
show offsets

Each offset may be a constant or an expression. Each defaults to 0.
Left and right offsets are given in units of the x axis, top and
bottom offsets in units of the y axis. A positive offset expands the
graph in the specified direction, e.g., a positive bottom offset makes
ymin more negative. Negative offsets, while permitted, can have
unexpected interactions with autoscaling and clipping.

Offsets are ignored in ‘splot‘s.

Example:
set offsets 0, 0, 2, 2
plot sin(x)

This graph of sin(x) will have a y range [-3:3] because the function
will be autoscaled to [-1:1] and the vertical offsets are each two.

1.158 gnuplot.guide/origin

gnuplot 121 / 236

origin

The
origin
command is used to specify the origin of a plotting

surface (i.e., the graph and its margins) on the screen. The
coordinates are given in the ‘screen‘ coordinate system (see
‘coordinates‘ for information about this system).

Syntax:
set origin <x-origin>,<y-origin>

1.159 gnuplot.guide/output

output

By default, screens are displayed to the standard output. The
output
command redirects the display to the specified file or device.

Syntax:
set output {"<filename>"}
show output

The filename must be enclosed in quotes. If the filename is
omitted, any output file opened by a previous invocation of

output
will be closed and new output will be sent to STDOUT. (If you ←↩

give the
command ‘set output "STDOUT"‘, your output may be sent to a file named
"STDOUT"! ["May be", not "will be", because some terminals, like
‘x11‘, ignore

output
.])

MSDOS users should note that the \ character has special
significance in double-quoted strings, so single-quotes should be used
for filenames in different directories.

When both
terminal
and

output
are used together, it is safest to

give
terminal
first, because some terminals set a flag which is needed

in some operating systems. This would be the case, for example, if the
operating system needs to know whether or not a file is to be formatted
in order to open it properly.

gnuplot 122 / 236

On machines with popen functions (Unix), output can be piped through
a shell command if the first non-whitespace character of the filename
is ’|’. For instance,

set output "|lpr -Plaser filename"
set output "|lp -dlaser filename"

On MSDOS machines, ‘set output "PRN"‘ will direct the output to the
default printer. On VMS, output can be sent directly to any spooled
device. It is also possible to send the output to DECnet transparent
tasks, which allows some flexibility.

1.160 gnuplot.guide/parametric_

parametric

The ‘set parametric‘ command changes the meaning of
plot
(‘splot‘)

from normal functions to parametric functions. The command ‘set
noparametric‘ restores the plotting style to normal, single-valued
expression plotting.

Syntax:
set parametric
set noparametric
show parametric

For 2-d plotting, a parametric function is determined by a pair of
parametric functions operating on a parameter. An example of a 2-d
parametric function would be ‘plot sin(t),cos(t)‘, which draws a circle
(if the aspect ratio is set correctly--see

size
). ‘gnuplot‘ will

display an error message if both functions are not provided for a
parametric

plot
.

For 3-d plotting, the surface is described as x=f(u,v), y=g(u,v),
z=h(u,v). Therefore a triplet of functions is required. An example of
a 3-d parametric function would be
‘cos(u)*cos(v),cos(u)*sin(v),sin(u)‘, which draws a sphere. ‘gnuplot‘
will display an error message if all three functions are not provided
for a parametric ‘splot‘.

The total set of possible plots is a superset of the simple f(x)
style plots, since the two functions can describe the x and y values to
be computed separately. In fact, plots of the type t,f(t) are
equivalent to those produced with f(x) because the x values are
computed using the identity function. Similarly, 3-d plots of the type

gnuplot 123 / 236

u,v,f(u,v) are equivalent to f(x,y).

Note that the order the parametric functions are specified is
xfunction, yfunction (and zfunction) and that each operates over the
common parametric domain.

Also, the ‘set parametric‘ function implies a new range of values.
Whereas the normal f(x) and f(x,y) style plotting assume an xrange and
yrange (and zrange), the parametric mode additionally specifies a
trange, urange, and vrange. These ranges may be set directly with

trange
,
urange
, and
vrange
, or by specifying the range on the
plot
or ‘splot‘ commands. Currently the default range for these ←↩

parametric
variables is [-5:5]. Setting the ranges to something more meaningful
is expected.

1.161 gnuplot.guide/pointsize

pointsize

The
pointsize
command scales the size of the points used in plots.

Syntax:
set pointsize <multiplier>
show pointsize

The default is a multiplier of 1.0. Larger pointsizes may be useful
to make points more visible in bitmapped graphics.

The pointsize of a single plot may be changed on the
plot
command.

See
with
for details.

Please note that the pointsize setting is not supported by all
terminal types.

gnuplot 124 / 236

1.162 gnuplot.guide/polar

polar

The ‘set polar‘ command changes the meaning of the plot from
rectangular coordinates to polar coordinates.

Syntax:
set polar
set nopolar
show polar

There have been changes made to polar mode in version 3.7, so that
scripts for ‘gnuplot‘ versions 3.5 and earlier will require
modification. The main change is that the dummy variable t is used for
the angle so that the x and y ranges can be controlled independently.
Other changes are: 1) tics are no longer put along the zero axes
automatically --use ‘set xtics axis nomirror‘; ‘set ytics axis
nomirror‘; 2) the grid, if selected, is not automatically polar --use
‘set grid polar‘; 3) the grid is not labelled with angles --use

label
as necessary.

In polar coordinates, the dummy variable (t) is an angle. The
default range of t is [0:2*pi], or, if degree units have been selected,
to [0:360] (see

angles
).

The command ‘set nopolar‘ changes the meaning of the plot back to
the default rectangular coordinate system.

The ‘set polar‘ command is not supported for ‘splot‘s. See the
mapping
command for similar functionality for ‘splot‘s.

While in polar coordinates the meaning of an expression in t is
really r = f(t), where t is an angle of rotation. The trange controls
the domain (the angle) of the function, and the x and y ranges control
the range of the graph in the x and y directions. Each of these
ranges, as well as the rrange, may be autoscaled or set explicitly.
See

xrange
for details of all the ‘set range‘ commands.

Example:
set polar
plot t*sin(t)
plot [-2*pi:2*pi] [-3:3] [-3:3] t*sin(t)

The first
plot
uses the default polar angular domain of 0 to 2*pi.

The radius and the size of the graph are scaled automatically. The
second

gnuplot 125 / 236

plot
expands the domain, and restricts the size of the graph to

[-3:3] in both directions.

You may want to ‘set size square‘ to have ‘gnuplot‘ try to make the
aspect ratio equal to unity, so that circles look circular.
Polar demos (http://www.gnuplot.vt.edu/gnuplot/gpdocs/polar.html)
Polar Data Plot. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/poldat.html)

1.163 gnuplot.guide/rmargin

rmargin

The command
rmargin
sets the size of the right margin. Please see

margin
for details.

1.164 gnuplot.guide/rrange

rrange

The
rrange
command sets the range of the radial coordinate for a

graph in polar mode. Please see
xrange
for details.

1.165 gnuplot.guide/samples

samples

The sampling rate of functions, or for interpolating data, may be
changed by the

samples
command.

Syntax:

gnuplot 126 / 236

set samples <samples_1> {,<samples_2>}
show samples

By default, sampling is set to 100 points. A higher sampling rate
will produce more accurate plots, but will take longer. This parameter
has no effect on data file plotting unless one of the
interpolation/approximation options is used. See

smooth
re 2-d data

and
cntrparam
and

dgrid3d
re 3-d data.

When a 2-d graph is being done, only the value of <samples_1> is
relevant.

When a surface plot is being done without the removal of hidden
lines, the value of samples specifies the number of samples that are to
be evaluated for the isolines. Each iso-v line will have <sample_1>
samples and each iso-u line will have <sample_2> samples. If you only
specify <samples_1>, <samples_2> will be set to the same value as
<samples_1>. See also

isosamples
.

1.166 gnuplot.guide/size

size

The
size
command scales the displayed size of the plot.

Syntax:
set size {{no}square | ratio <r> | noratio} {<xscale>,<yscale>}
show size

The <xscale> and <yscale> values are the scaling factors for the
size of the plot, which includes the graph and the margins.

‘ratio‘ causes ‘gnuplot‘ to try to create a graph with an aspect
ratio of <r> (the ratio of the y-axis length to the x-axis length)
within the portion of the plot specified by <xscale> and <yscale>.

The meaning of a negative value for <r> is different. If <r>=-1,
gnuplot tries to set the scales so that the unit has the same length on
both the x and y axes (suitable for geographical data, for instance).
If <r>=-2, the unit on y has twice the length of the unit on x, and so
on.

gnuplot 127 / 236

The success of ‘gnuplot‘ in producing the requested aspect ratio
depends on the terminal selected. The graph area will be the largest
rectangle of aspect ratio <r> that will fit into the specified portion
of the output (leaving adequate margins, of course).

‘square‘ is a synonym for ‘ratio 1‘.

Both ‘noratio‘ and ‘nosquare‘ return the graph to the default aspect
ratio of the terminal, but do not return <xscale> or <yscale> to their
default values (1.0).

‘ratio‘ and ‘square‘ have no effect on 3-d plots.

size
is relative to the default size, which differs from terminal to

terminal. Since ‘gnuplot‘ fills as much of the available plotting area
as possible by default, it is safer to use

size
to decrease the size of

a plot than to increase it. See
terminal
for the default sizes.

On some terminals, changing the size of the plot will result in text
being misplaced.

Examples:

To set the size to normal size use:
set size 1,1

To make the graph half size and square use:
set size square 0.5,0.5

To make the graph twice as high as wide use:
set size ratio 2

See demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/airfoil.html)

1.167 gnuplot.guide/style

style

Default styles are chosen with the
style
and

style
commands. See

with
for information about how to override the default plotting style

gnuplot 128 / 236

for individual functions and data sets.

Syntax:
set function style <style>
set data style <style>
show function style
show data style

The types used for all line and point styles (i.e., solid, dash-dot,
color, etc. for lines; circles, squares, crosses, etc. for points) will
be either those specified on the

plot
or ‘splot‘ command or will be

chosen sequentially from the types available to the terminal in use.
Use the command

test
to see what is available.

None of the styles requiring more than two columns of information
(e.g.,

errorbars
) can be used with ‘splot‘s or function
plot
s.

Neither
boxes
nor any of the

steps
styles can be used with ‘splot‘s.

If an inappropriate style is specified, it will be changed to ‘points‘.

For 2-d data with more than two columns, ‘gnuplot‘ is picky about
the allowed ‘errorbar‘ styles. The

using
option on the

plot
command

can be used to set up the correct columns for the style you want. (In
this discussion, "column" will be used to refer both to a column in the
data file and an entry in the

using
list.)

For three columns, only
xerrorbars
,
yerrorbars
(or

errorbars
),

boxes
, and
boxerrorbars
are allowed. If another plot style is used,

the style will be changed to
yerrorbars

gnuplot 129 / 236

. The
boxerrorbars
style will

calculate the boxwidth automatically.

For four columns, only
xerrorbars
,
yerrorbars
(or

errorbars
),

xyerrorbars
,
boxxyerrorbars
, and
boxerrorbars
are allowed. An

illegal style will be changed to
yerrorbars
.

Five-column data allow only the
boxerrorbars
,
financebars
, and

candlesticks
styles. (The last two of these are primarily used for

plots of financial prices.) An illegal style will be changed to
boxerrorbars
before plotting.

Six- and seven-column data only allow the
xyerrorbars
and

boxxyerrorbars
styles. Illegal styles will be changed to
xyerrorbars
before plotting.

For more information about error bars, please see
errorbars
.

boxerrorbars

boxes

boxxyerrorbars

candlesticks

gnuplot 130 / 236

dots

financebars

fsteps

histeps

impulses

lines

linespoints

points

steps

vector

xerrorbars

xyerrorbars

yerrorbars

1.168 gnuplot.guide/boxerrorbars

boxerrorbars
............

The
boxerrorbars
style is only relevant to 2-d data plotting. It

is a combination of the
boxes
and

yerrorbars
styles. The boxwidth

will come from the fourth column if the y errors are in the form of
"ydelta" and the boxwidth was not previously set equal to -2.0 (‘set
boxwidth -2.0‘) or from the fifth column if the y errors are in the
form of "ylow yhigh". The special case ‘boxwidth = -2.0‘ is for
four-column data with y errors in the form "ylow yhigh". In this case
the boxwidth will be calculated so that each box touches the adjacent
boxes. The width will also be calculated in cases where three-column
data are used.

The box height is determined from the y error in the same way as it
is for the

yerrorbars
style--either from y-ydelta to y+ydelta or from

ylow to yhigh, depending on how many data columns are provided.
See Demo. (http://www.nas.nasa.gov/~woo/gnuplot/errorbar/errorbar.html)

gnuplot 131 / 236

1.169 gnuplot.guide/boxes

boxes
.....

The
boxes
style is only relevant to 2-d plotting. It draws a box

centered about the given x coordinate from the x axis (not the graph
border) to the given y coordinate. The width of the box is obtained in
one of three ways. If it is a data plot and the data file has a third
column, this will be used to set the width of the box. If not, if a
width has been set using the

boxwidth
command, this will be used. If

neither of these is available, the width of each box will be calculated
automatically so that it touches the adjacent boxes.

1.170 gnuplot.guide/boxxyerrorbars

boxxyerrorbars
..............

The
boxxyerrorbars
style is only relevant to 2-d data plotting. It

is a combination of the
boxes
and

xyerrorbars
styles.

The box width and height are determined from the x and y errors in
the same way as they are for the

xyerrorbars
style--either from xlow

to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta and from
y-ydelta to y+ydelta , depending on how many data columns are provided.

1.171 gnuplot.guide/candlesticks

gnuplot 132 / 236

candlesticks
............

The
candlesticks
style is only relevant for 2-d data plotting of

financial data. Five columns of data are required; in order, these
should be the x coordinate (most likely a date) and the opening, low,
high, and closing prices. The symbol is an open rectangle, centered
horizontally at the x coordinate and limited vertically by the opening
and closing prices. A vertical line segment at the x coordinate
extends up from the top of the rectangle to the high price and another
down to the low. The width of the rectangle may be changed by

bar
.

The symbol will be unchanged if the low and high prices are
interchanged or if the opening and closing prices are interchanged.
See

bar
and

financebars
.

See demos. (http://www.nas.nasa.gov/~woo/gnuplot/finance/finance.html)

1.172 gnuplot.guide/dots

dots
....

The
dots
style plots a tiny dot at each point; this is useful for

scatter plots with many points.

1.173 gnuplot.guide/financebars

financebars
...........

The
financebars
style is only relevant for 2-d data plotting of

financial data. Five columns of data are required; in order, these
should be the x coordinate (most likely a date) and the opening, low,
high, and closing prices. The symbol is a vertical line segment,
located horizontally at the x coordinate and limited vertically by the
high and low prices. A horizontal tic on the left marks the opening

gnuplot 133 / 236

price and one on the right marks the closing price. The length of
these tics may be changed by

bar
. The symbol will be unchanged if the

high and low prices are interchanged. See
bar
and

candlesticks
.

See demos. (http://www.nas.nasa.gov/~woo/gnuplot/finance/finance.html)

1.174 gnuplot.guide/fsteps

fsteps
......

The
fsteps
style is only relevant to 2-d plotting. It connects

consecutive points with two line segments: the first from (x1,y1) to
(x1,y2) and the second from (x1,y2) to (x2,y2).
See demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/steps.html)

1.175 gnuplot.guide/histeps

histeps
.......

The
histeps
style is only relevant to 2-d plotting. It is intended

for plotting histograms. Y-values are assumed to be centered at the
x-values; the point at x1 is represented as a horizontal line from
((x0+x1)/2,y1) to ((x1+x2)/2,y1). The lines representing the end
points are extended so that the step is centered on at x. Adjacent
points are connected by a vertical line at their average x, that is,
from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).

If
autoscale
is in effect, it selects the xrange from the data

rather than the steps, so the end points will appear only half as wide
as the others. See demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/steps.html)

histeps
is only a plotting style; ‘gnuplot‘ does not have the ability

to create bins and determine their population from some data set.

gnuplot 134 / 236

1.176 gnuplot.guide/impulses

impulses
........

The
impulses
style displays a vertical line from the x axis (not

the graph border), or from the grid base for ‘splot‘, to each point.

1.177 gnuplot.guide/lines

lines
.....

The ‘lines‘ style connects adjacent points with straight line
segments.

1.178 gnuplot.guide/linespoints

linespoints
...........

The
linespoints
style does both ‘lines‘ and ‘points‘, that is, it

draws a small symbol at each point and then connects adjacent points
with straight line segments. The command

pointsize
may be used to

change the size of the points. See
pointsize
for its usage.

linespoints
may be abbreviated ‘lp‘.

gnuplot 135 / 236

1.179 gnuplot.guide/points

points
......

The ‘points‘ style displays a small symbol at each point. The
command

pointsize
may be used to change the size of the points. See

pointsize
for its usage.

1.180 gnuplot.guide/steps

steps
.....

The
steps
style is only relevant to 2-d plotting. It connects

consecutive points with two line segments: the first from (x1,y1) to
(x2,y1) and the second from (x2,y1) to (x2,y2).
See demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/steps.html)

1.181 gnuplot.guide/vector

vector
......

The
vector
style draws a vector from (x,y) to (x+xdelta,y+ydelta).

Thus it requires four columns of data. It also draws a small arrowhead
at the end of the vector.

The
vector
style is still experimental: it doesn’t get clipped

properly and other things may also be wrong with it. Use it at your
own risk.

1.182 gnuplot.guide/xerrorbars

gnuplot 136 / 236

xerrorbars
..........

The
xerrorbars
style is only relevant to 2-d data plots.

xerrorbars
is like

dots
, except that a horizontal error bar is also

drawn. At each point (x,y), a line is drawn from (xlow,y) to (xhigh,y)
or from (x-xdelta,y) to (x+xdelta,y), depending on how many data
columns are provided. A tic mark is placed at the ends of the error
bar (unless

bar
is used--see

bar
for details).

1.183 gnuplot.guide/xyerrorbars

xyerrorbars
...........

The
xyerrorbars
style is only relevant to 2-d data plots.

xyerrorbars
is like

dots
, except that horizontal and vertical error

bars are also drawn. At each point (x,y), lines are drawn from
(x,y-ydelta) to (x,y+ydelta) and from (x-xdelta,y) to (x+xdelta,y) or
from (x,ylow) to (x,yhigh) and from (xlow,y) to (xhigh,y), depending
upon the number of data columns provided. A tic mark is placed at the
ends of the error bar (unless

bar
is used--see

bar
for details).

If data are provided in an unsupported mixed form, the
using
filter

on the
plot
command should be used to set up the appropriate form.

For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then
you can use

gnuplot 137 / 236

plot ’data’ using 1:2:($1-$3),($1+$3),4,5 with xyerrorbars

1.184 gnuplot.guide/yerrorbars

yerrorbars
..........

The
yerrorbars
(or

errorbars
) style is only relevant to 2-d data

plots.
yerrorbars
is like

dots
, except that a vertical error bar is

also drawn. At each point (x,y), a line is drawn from (x,y-ydelta) to
(x,y+ydelta) or from (x,ylow) to (x,yhigh), depending on how many data
columns are provided. A tic mark is placed at the ends of the error
bar (unless

bar
is used--see

bar
for details).

See demo. (http://www.nas.nasa.gov/~woo/gnuplot/errorbar/errorbar.html)

1.185 gnuplot.guide/surface

surface

The command
surface
controls the display of surfaces by ‘splot‘.

Syntax:
set surface
set nosurface
show surface

The surface is drawn with the style specifed by
with
, or else the

appropriate style, data or function.

Whenever ‘set nosurface‘ is issued, ‘splot‘ will not draw points or
lines corresponding to the function or data file points. Contours may

gnuplot 138 / 236

be still be drawn on the surface, depending on the
contour
option.

‘set nosurface; set contour base‘ is useful for displaying contours on
the grid base. See also

contour
.

1.186 gnuplot.guide/terminal

terminal

‘gnuplot‘ supports many different graphics devices. Use
terminal
to

tell ‘gnuplot‘ what kind of output to generate. Use
output
to redirect

that output to a file or device.

Syntax:
set terminal {<terminal-type>}
show terminal

If <terminal-type> is omitted, ‘gnuplot‘ will list the available
terminal types. <terminal-type> may be abbreviated.

If both
terminal
and

output
are used together, it is safest to

give
terminal
first, because some terminals set a flag which is needed

in some operating systems.

Several terminals have additional options. For example, see ‘dumb‘,
‘iris4d‘, ‘hpljii‘ or ‘postscript‘.

This document may describe drivers that are not available to you
because they were not installed, or it may not describe all the drivers
that are available to you, depending on its output format. @c <4 - all
terminal stuff is pulled from the .trm files

aifm

cgm

corel

gnuplot 139 / 236

dumb

dxf

eepic

epson-180dpi

fig

gif

gpic

hp2623a

hp2648

hp500c

hpgl

hpljii

hppj

imagen

latex

mf

mif

pbm

png

postscript

pslatex_and_pstex

pstricks

qms

regis

sun

tek410x

table

tek40

gnuplot 140 / 236

texdraw

tgif

tkcanvas

tpic

x11

xlib

1.187 gnuplot.guide/aifm

aifm
....

Several options may be set in ‘aifm‘--the Adobe Illustrator 3.0+
driver.

Syntax:
set terminal aifm {<color>} {"<fontname>"} {<fontsize>}

<color> is either ‘color‘ or ‘monochrome‘; "<fontname>" is the name
of a valid PostScript font; <fontsize> is the size of the font in
PostScript points, before scaling by the

size
command. Selecting

‘default‘ sets all options to their default values: ‘monochrome‘,
"Helvetica", and 14pt.

Since AI does not really support multiple pages, multiple graphs
will be drawn directly on top of one another. However, each graph will
be grouped individually, making it easy to separate them inside AI
(just pick them up and move them).

Examples:
set term aifm
set term aifm 22
set size 0.7,1.4; set term aifm color "Times-Roman" 14"

1.188 gnuplot.guide/cgm

cgm
...

The ‘cgm‘ terminal generates a Computer Graphics Metafile. This
file format is a subset of the ANSI X3.122-1986 standard entitled
"Computer Graphics - Metafile for the Storage and Transfer of Picture

gnuplot 141 / 236

Description Information". Several options may be set in ‘cgm‘.

Syntax:
set terminal cgm {<mode>} {<color>} {<rotation>} {solid | dashed}

{width <plot_width>} {linewidth <line_width>}
{""} {<fontsize>}

where <mode> is ‘landscape‘, ‘portrait‘, or ‘default‘; <color> is
either ‘color‘ or ‘monochrome‘; <rotation> is either ‘rotate‘ or
‘norotate‘; ‘solid‘ draws all curves with solid lines, overriding any
dashed patterns; <plot_width> is the width of the page in points;
<line_width> is the line width in points; is the name of a font;
and ‘<fontsize>‘ is the size of the font in points.

By default, ‘cgm‘ uses rotated text for the Y axis label.

The first six options can be in any order. Selecting ‘default‘ sets
all options to their default values.

Examples:
set terminal cgm landscape color rotate dashed width 432 \\

linewidth 1 ’Arial Bold’ 12 # defaults
set terminal cgm 14 linewidth 2 14 # wider lines & larger font
set terminal cgm portrait ’Times Roman Italic’ 12
set terminal cgm color solid # no pesky dashes!

-- FONT --

The first part of a Computer Graphics Metafile, the metafile
description, includes a font table. In the picture body, a font is
designated by an index into this table. By default, this terminal
generates a table with the following fonts:

Arial
Arial Italic
Arial Bold
Arial Bold Italic
Times Roman
Times Roman Italic
Times Roman Bold
Times Roman Bold Italic
Helvetica
Roman

Case is not distinct, but the modifiers must appear in the above
order (that is, not ’Arial Italic Bold’). ’Arial Bold’ is the default
font.

You may also specify a font name which does not appear in the
default font table. In that case, a new font table is constructed with
the specified font as its only entry. You must ensure that the
spelling, capitalization, and spacing of the name are appropriate for
the application that will read the CGM file.

-- FONTSIZE --

Fonts are scaled assuming the page is 6 inches wide. If the

gnuplot 142 / 236

size
command is used to change the aspect ratio of the page or the CGM ←↩

file
is converted to a different width (e.g. it is imported into a document
in which the margins are not 6 inches apart), the resulting font sizes
will be different. To change the assumed width, use the ‘width‘ option.

-- LINEWIDTH --

The ‘linewidth‘ option sets the width of lines in pt. The default
width is 1 pt. Scaling is affected by the actual width of the page, as
discussed under the ‘fontsize‘ and ‘width‘ options

-- ROTATE --

The ‘norotate‘ option may be used to disable text rotation. For
example, the CGM input filter for Word for Windows 6.0c can accept
rotated text, but the DRAW editor within Word cannot. If you edit a
graph (for example, to label a curve), all rotated text is restored to
horizontal. The Y axis label will then extend beyond the clip
boundary. With ‘norotate‘, the Y axis label starts in a less
attractive location, but the page can be edited without damage. The
‘rotate‘ option confirms the default behavior.

-- SOLID --

The ‘solid‘ option may be used to disable dashed line styles in the
plots. This is useful when color is enabled and the dashing of the
lines detracts from the appearance of the plot. The ‘dashed‘ option
confirms the default behavior, which gives a different dash pattern to
each curve.

-- SIZE --

Default size of a CGM page is 32599 units wide and 23457 units high
for landscape, or 23457 units wide by 32599 units high for portrait.

-- WIDTH --

All distances in the CGM file are in abstract units. The
application that reads the file determines the size of the final page.
By default, the width of the final page is assumed to be 6 inches
(15.24 cm). This distance is used to calculate the correct font size,
and may be changed with the ‘width‘ option. The keyword should be
followed by the width in points. (Here, a point is 1/72 inch, as in
PostScript. This unit is known as a "big point" in TeX.) ‘gnuplot‘
arithmetic can be used to convert from other units, as follows:

set terminal cgm width 432 # default
set terminal cgm width 6*72 # same as above
set terminal cgm width 10/2.54*72 # 10 cm wide

-- WINWORD6 --

The default font table was chosen to match, where possible, the
default font assignments made by the Computer Graphics Metafile input
filter for Microsoft Word 6.0c, although the filter makes available
only ’Arial’ and ’Times Roman’ fonts and their bold and/or italic

gnuplot 143 / 236

variants. Other fonts such as ’Helvetica’ and ’Roman’ are not
available. If the CGM file includes a font table, the filter mostly
ignores it. However, it changes certain font assignments so that they
disagree with the table. As a workaround, the ‘winword6‘ option
deletes the font table from the CGM file. In this case, the filter
makes predictable font assignments. ’Arial Bold’ is correctly assigned
even with the font table present, which is one reason it was chosen as
the default.

‘winword6‘ disables the color tables for a similar reason--with the
color table included, Microsoft Word displays black for color 7.

Linewidths and pointsizes may be changed with
linestyle
."

1.189 gnuplot.guide/corel

corel
.....

The ‘corel‘ terminal driver supports CorelDraw.

Syntax:
set terminal corel { default

| {monochrome | color
{<fontname> {"<fontsize>"

{<xsize> <ysize> {<linewidth> }}}}}

where the fontsize and linewidth are specified in points and the
sizes in inches. The defaults are monochrome, "SwitzerlandLight", 22,
8.2, 10 and 1.2."

1.190 gnuplot.guide/dumb

dumb
....

The ‘dumb‘ terminal driver has an optional size specification and
trailing linefeed control.

Syntax:
set terminal dumb {[no]feed} {<xsize> <ysize>}

where <xsize> and <ysize> set the size of the dumb terminals.
Default is 79 by 24. The last newline is printed only if ‘feed‘ is
enabled.

Examples:

gnuplot 144 / 236

set term dumb nofeed
set term dumb 79 49 # VGA screen---why would anyone do that?"

1.191 gnuplot.guide/dxf

dxf
...

The ‘dxf‘ terminal driver creates pictures that can be imported into
AutoCad (Release 10.x). It has no options of its own, but some
features of its plots may be modified by other means. The default size
is 120x80 AutoCad units, which can be changed by

size
. ‘dxf‘ uses

seven colors (white, red, yellow, green, cyan, blue and magenta), which
can be changed only by modifying the source file. If a black-and-white
plotting device is used, the colors are mapped to differing line
thicknesses. See the description of the AutoCad print/plot command."

1.192 gnuplot.guide/eepic

eepic
.....

The ‘eepic‘ terminal driver supports the extended LaTeX picture
environment. It is an alternative to the ‘latex‘ driver.

The output of this terminal is intended for use with the "eepic.sty"
macro package for LaTeX. To use it, you need "eepic.sty", "epic.sty"
and a printer driver that supports the "tpic" \\specials. If your
printer driver doesn’t support those \\specials, "eepicemu.sty" will
enable you to use some of them.

Although dotted and dashed lines are possible with ‘eepic‘ and are
tempting, they do not work well for high-sample-rate curves, fusing the
dashes all together into a solid line. For now, the ‘eepic‘ driver
creates only solid lines. There is another gnuplot driver (‘tpic‘)
that supports dashed lines, but it cannot be used if your DVI driver
doesn’t support "tpic" \\specials.

All drivers for LaTeX offer a special way of controlling text
positioning: If any text string begins with ’{’, you also need to
include a ’}’ at the end of the text, and the whole text will be
centered both horizontally and vertically by LaTeX. -- If the text
string begins with ’[’, you need to continue it with: a position
specification (up to two out of t,b,l,r), ’]{’, the text itself, and
finally, ’}’. The text itself may be anything LaTeX can typeset as an
LR-box. \\rule{}{}’s may help for best positioning.

gnuplot 145 / 236

The ‘eepic‘ terminal has no options.

Examples: About label positioning: Use gnuplot defaults (mostly
sensible, but sometimes not really best):

set title ’\\LaTeX\\ -- $ \\gamma $’

Force centering both horizontally and vertically:
set label ’{\\LaTeX\\ -- $ \\gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\\LaTeX\\ -- $ \\gamma $}’

The other label - account for long ticlabels:
set ylabel ’[r]{\\LaTeX\\ -- $ \\gamma $\\rule{7mm}{0pt}’"

1.193 gnuplot.guide/epson-180dpi

epson-180dpi
............

This driver supports a family of Epson printers and derivatives.

‘epson-180dpi‘ and ‘epson-60dpi‘ are drivers for Epson LQ-style
24-pin printers with resolutions of 180 and 60 dots per inch,
respectively.

‘epson-lx800‘ is a generic 9-pin driver appropriate for printers
like the Epson LX-800, the Star NL-10 and NX-1000, the PROPRINTER, and
so forth.

‘nec-cp6‘ is generix 24-pin driver that can be used for printers
like the NEC CP6 and the Epson LQ-800.

The ‘okidata‘ driver supports the 9-pin OKIDATA 320/321 Standard
printers.

The ‘starc‘ driver is for the Star Color Printer.

The ‘tandy-60dpi‘ driver is for the Tandy DMP-130 series of 9-pin,
60-dpi printers.

Only ‘nec-cp6‘ has any options.

Syntax:
set terminal nec-cp6 {monochrome | colour | draft}

which defaults to monochrome.

With each of these drivers, a binary copy is required on a PC to
print. Do not use

print
--use instead ‘copy file /b lpt1:‘."

gnuplot 146 / 236

1.194 gnuplot.guide/fig

fig
...

The ‘fig‘ terminal device generates output in the Fig graphics
language.

Syntax:
set terminal fig {monochrome | color} {small | big}

{pointsmax <max_points>}
{landscape | portrait}
{metric | inches}
{fontsize <fsize>}
{size <xsize> <ysize>}
{thickness <units>}
{depth <layer>}

‘monochrome‘ and ‘color‘ determine whether the picture is
black-and-white or ‘color‘. ‘small‘ and ‘big‘ produce a 5x3 or 8x5
inch graph in the default ‘landscape‘ mode and 3x5 or 5x8 inches in
‘portrait‘ mode. <max_points> sets the maximum number of points per
polyline. Default units for editing with "xfig" may be ‘metric‘ or
‘inches‘. ‘fontsize‘ sets the size of the text font to <fsize> points.

size
sets (overrides) the size of the drawing area to <xsize>*<ysize>

in units of inches or centimeters depending on the ‘inches‘ or ‘metric‘
setting in effect. ‘depth‘ sets the default depth layer for all lines
and text. The default depth is 10 to leave room for adding material
with "xfig" on top of the plot.

‘thickness‘ sets the default line thickness, which is 1 if not
specified. Overriding the thickness can be achieved by adding a
multiple of 100 to the to the ‘linetype‘ value for a

plot
command. In

a similar way the ‘depth‘ of plot elements (with respect to the default
depth) can be controlled by adding a multiple of 1000 to <linetype>.
The depth is then <layer> + <linetype>/1000 and the thickness is
(<linetype>%1000)/100 or, if that is zero, the default line thickness.

Additional point-plot symbols are also available with the ‘fig‘
driver. The symbols can be used through ‘pointtype‘ values % 100 above
50, with different fill intensities controlled by <pointtype> % 5 and
outlines in black (for <pointtype> % 10 < 5) or in the current color.
Available symbols are

50 - 59: circles
60 - 69: squares
70 - 79: diamonds
80 - 89: upwards triangles
90 - 99: downwards triangles

gnuplot 147 / 236

The size of these symbols is linked to the font size. The depth of
symbols is by default one less than the depth for lines to achieve nice
error bars. If <pointtype> is above 1000, the depth is <layer> +
<pointtype>/1000-1. If <pointtype>%1000 is above 100, the fill color
is (<pointtype>%1000)/100-1.

Available fill colors are (from 1 to 9): black, blue, green, cyan,
red, magenta, yellow, white and dark blue (in monochrome mode: black
for 1 to 6 and white for 7 to 9).

See
with
for details of <linetype> and <pointtype>.

The ‘big‘ option is a substitute for the ‘bfig‘ terminal in earlier
versions, which is no longer supported.

Examples:
set terminal fig monochrome small pointsmax 1000 # defaults

plot ’file.dat’ with points linetype 102 pointtype 759

would produce circles with a blue outline of width 1 and yellow fill
color.

plot ’file.dat’ using 1:2:3 with err linetype 1 pointtype 554

would produce errorbars with black lines and circles filled red.
These circles are one layer above the lines (at depth 9 by default).

To plot the error bars on top of the circles use
plot ’file.dat’ using 1:2:3 with err linetype 1 pointtype 2554"

1.195 gnuplot.guide/gif

gif
...

The ‘gif‘ terminal driver generates output in GIF format. It uses
Thomas Boutell’s gd library, which is available from
http://www.boutell.com/gd/

By default, the ‘gif‘ terminal driver uses a shared Web-friendy
palette."

Syntax:
set terminal gif {transparent} {interlace}

{tiny | small | medium | large | giant}
{size <x>,<y>}
{<color0> <color1> <color2> ...}

‘transparent‘ instructs the driver to generate transparent GIFs.
The first color will be the transparent one.

gnuplot 148 / 236

‘interlace‘ instructs the driver to generate interlaced GIFs.

The choice of fonts is ‘tiny‘ (5x8 pixels), ‘small‘ (6x12 pixels),
‘medium‘ (7x13 Bold), ‘large‘ (8x16) or ‘giant‘ (9x15 pixels)

The size <x,y> is given in pixels--it defaults to 640x480. The
number of pixels can be also modified by scaling with the

size
command.

Each color must be of the form ’xrrggbb’, where x is the literal
character ’x’ and ’rrggbb’ are the red, green and blue components in
hex. For example, ’x00ff00’ is green. The background color is set
first, then the border colors, then the X & Y axis colors, then the
plotting colors. The maximum number of colors that can be set is 256.

Examples:
set terminal gif small size 640,480 \\

xffffff x000000 x404040 \\
xff0000 xffa500 x66cdaa xcdb5cd \\
xadd8e6 x0000ff xdda0dd x9500d3 # defaults

which uses white for the non-transparent background, black for
borders, gray for the axes, and red, orange, medium aquamarine, thistle
3, light blue, blue, plum and dark violet for eight plotting colors.

set terminal gif transparent xffffff \\
x000000 x202020 x404040 x606060 \\
x808080 xA0A0A0 xC0C0C0 xE0E0E0 \\

which uses white for the transparent background, black for borders,
dark gray for axes, and a gray-scale for the six plotting colors.

The page size is 640x480 pixels. The ‘gif‘ driver can create either
color or monochromatic output, but you have no control over which is
produced.

The current version of the ‘gif‘ driver does not support animated
GIFs."

1.196 gnuplot.guide/gpic

gpic
....

The ‘gpic‘ terminal driver generates GPIC graphs in the Free Software
Foundations’s "groff" package. The default size is 5 x 3 inches. The
only option is the origin, which defaults to (0,0).

Syntax:
set terminal gpic {<x> <y>}

gnuplot 149 / 236

where ‘x‘ and ‘y‘ are in inches.

A simple graph can be formatted using

groff -p -mpic -Tps file.pic > file.ps.

The output from pic can be pipe-lined into eqn, so it is possible to
put complex functions in a graph with the

label
and ‘set {x/y}label‘

commands. For instance,

set ylab ’@space 0 int from 0 to x alpha (t) roman d t@’

will label the y axis with a nice integral if formatted with the
command:

gpic filename.pic | geqn -d@@ -Tps | groff -m[macro-package] -Tps
> filename.ps

Figures made this way can be scaled to fit into a document. The pic
language is easy to understand, so the graphs can be edited by hand if
need be. All co-ordinates in the pic-file produced by ‘gnuplot‘ are
given as x+gnuplotx and y+gnuploty. By default x and y are given the
value 0. If this line is removed with an editor in a number of files,
one can put several graphs in one figure like this (default size is
5.0x3.0 inches):

.PS 8.0
x=0;y=3
copy "figa.pic"
x=5;y=3
copy "figb.pic"
x=0;y=0
copy "figc.pic"
x=5;y=0
copy "figd.pic"
.PE

This will produce an 8-inch-wide figure with four graphs in two rows
on top of each other.

One can also achieve the same thing by the command

set terminal gpic x y

for example, using

.PS 6.0
copy "trig.pic"
.PE"

gnuplot 150 / 236

1.197 gnuplot.guide/hp2623a

hp2623a
.......

The ‘hp2623a‘ terminal driver supports the Hewlett Packard HP2623A.
It has no options."

1.198 gnuplot.guide/hp2648

hp2648
......

The ‘hp2648‘ terminal driver supports the Hewlett Packard HP2647 and
HP2648. It has no options."

1.199 gnuplot.guide/hp500c

hp500c
......

The ‘hp500c‘ terminal driver supports the Hewlett Packard HP DeskJet
500c. It has options for resolution and compression.

Syntax:
set terminal hp500c {<res>} {<comp>}

where ‘res‘ can be 75, 100, 150 or 300 dots per inch and ‘comp‘ can
be "rle", or "tiff". Any other inputs are replaced by the defaults,
which are 75 dpi and no compression. Rasterization at the higher
resolutions may require a large amount of memory."

1.200 gnuplot.guide/hpgl

hpgl
....

The ‘hpgl‘ driver produces HPGL output for devices like the HP7475A
plotter. There are two options which can be set--the number of pens
and "eject", which tells the plotter to eject a page when done. The
default is to use 6 pens and not to eject the page when done.

The international character sets ISO-8859-1 and CP850 are recognized
via ‘set encoding iso_8859_1‘ or ‘set encoding cp850‘ (see

encoding
for

gnuplot 151 / 236

details).

Syntax:
set terminal hpgl {<number_of_pens>} {eject}

The selection

set terminal hpgl 8 eject

is equivalent to the previous ‘hp7550‘ terminal, and the selection

set terminal hpgl 4

is equivalent to the previous ‘hp7580b‘ terminal.

The ‘pcl5‘ driver supports the Hewlett-Packard Laserjet III. It
actually uses HPGL-2, but there is a name conflict among the terminal
devices. It has several options

Syntax:
set terminal pcl5 {<mode>} {} {<fontsize>}

where <mode> is ‘landscape‘, or ‘portrait‘, is ‘stick‘,
‘univers‘, or ‘cg_times‘, and <fontsize> is the size in points.

With ‘pcl5‘ international characters are handled by the printer; you
just put the appropriate 8-bit character codes into the text strings.
You don’t need to bother with

encoding
.

HPGL graphics can be imported by many software packages."

1.201 gnuplot.guide/hpljii

hpljii
......

The ‘hpljii‘ terminal driver supports the HP Laserjet Series II
printer. The ‘hpdj‘ driver supports the HP DeskJet 500 printer. These
drivers allow a choice of resolutions.

Syntax:
set terminal hpljii | hpdj {<res>}

where ‘res‘ may be 75, 100, 150 or 300 dots per inch; the default is
75. Rasterization at the higher resolutions may require a large amount
of memory.

The ‘hp500c‘ terminal is similar to ‘hpdj‘; ‘hp500c‘ additionally
supports color and compression."

gnuplot 152 / 236

1.202 gnuplot.guide/hppj

hppj
....

The ‘hppj‘ terminal driver supports the HP PaintJet and HP3630
printers. The only option is the choice of font.

Syntax:
set terminal hppj {FNT5X9 | FNT9X17 | FNT13X25}

with the middle-sized font (FNT9X17) being the default."

1.203 gnuplot.guide/imagen

imagen
......

The ‘imagen‘ terminal driver supports Imagen laser printers. It is
capable of placing multiple graphs on a single page.

Syntax:
set terminal imagen {<fontsize>} {portrait | landscape}

{[<horiz>,<vert>]}

where ‘fontsize‘ defaults to 12 points and the layout defaults to
‘landscape‘. ‘<horiz>‘ and ‘<vert>‘ are the number of graphs in the
horizontal and vertical directions; these default to unity.

Example:
set terminal imagen portrait [2,3]

puts six graphs on the page in three rows of two in portrait
orientation."

1.204 gnuplot.guide/latex

latex
.....

The ‘latex‘ and ‘emtex‘ drivers allow two options.

Syntax:
set terminal latex | emtex {courier | roman | default} {<fontsize>}

‘fontsize‘ may be any size you specify. The default is for the plot
to inherit its font setting from the embedding document.

Unless your driver is capable of building fonts at any size (e.g.
dvips), stick to the standard 10, 11 and 12 point sizes.

gnuplot 153 / 236

METAFONT users beware: METAFONT does not like odd sizes.

All drivers for LaTeX offer a special way of controlling text
positioning: If any text string begins with ’{’, you also need to
include a ’}’ at the end of the text, and the whole text will be
centered both horizontally and vertically. If the text string begins
with ’[’, you need to follow this with a position specification (up to
two out of t,b,l,r), ’]{’, the text itself, and finally ’}’. The text
itself may be anything LaTeX can typeset as an LR-box. ’\\rule{}{}’s
may help for best positioning.

Points, among other things, are drawn using the LaTeX commands
"\\Diamond" and "\\Box". These commands no longer belong to
the LaTeX2e core; they are included in the latexsym package, which is
part of the base distribution and thus part of any LaTeX
implementation. Please do not forget to use this package.

Points are drawn with the LaTex commands \\Diamond and \\Box.
These commands do no longer belong to the LaTeX2e core, but are
included in the latexsym-package in the base distribution, and are
hence part of all LaTeX implementations. Please do not forget to use
this package.

Examples: About label positioning: Use gnuplot defaults (mostly
sensible, but sometimes not really best):

set title ’\\LaTeX\\ -- $ \\gamma $’

Force centering both horizontally and vertically:
set label ’{\\LaTeX\\ -- $ \\gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\\LaTeX\\ -- $ \\gamma $}’

The other label - account for long ticlabels:
set ylabel ’[r]{\\LaTeX\\ -- $ \\gamma $\\rule{7mm}{0pt}’"

1.205 gnuplot.guide/mf

mf
..

The ‘mf‘ terminal driver creates a input file to the METAFONT
program. Thus a figure may be used in the TeX document in the same way
as is a character.

To use a picture in a document, the METAFONT program must be run
with the output file from ‘gnuplot‘ as input. Thus, the user needs a
basic knowledge of the font creating process and the procedure for
including a new font in a document. However, if the METAFONT program
is set up properly at the local site, an unexperienced user could
perform the operation without much trouble.

The text support is based on a METAFONT character set. Currently the

gnuplot 154 / 236

Computer Modern Roman font set is input, but the user is in principal
free to chose whatever fonts he or she needs. The METAFONT source
files for the chosen font must be available. Each character is stored
in a separate picture variable in METAFONT. These variables may be
manipulated (rotated, scaled etc.) when characters are needed. The
drawback is the interpretation time in the METAFONT program. On some
machines (i.e. PC) the limited amount of memory available may also
cause problems if too many pictures are stored.

The ‘mf‘ terminal has no options.

-- METAFONT INSTRUCTIONS --

- Set your terminal to METAFONT:
set terminal mf

- Select an output-file, e.g.:
set output "myfigures.mf"

- Create your pictures. Each picture will generate a separate
character. Its default size will be 5*3 inches. You can change the size
by saying ‘set size 0.5,0.5‘ or whatever fraction of the default size
you want to have.

- Quit ‘gnuplot‘.

- Generate a TFM and GF file by running METAFONT on the output of
‘gnuplot‘. Since the picture is quite large (5*3 in), you will have to
use a version of METAFONT that has a value of at least 150000 for
memmax. On Unix systems these are conventionally installed under the
name bigmf. For the following assume that the command virmf stands for
a big version of METAFONT. For example:

- Invoke METAFONT:
virmf ’&plain’

- Select the output device: At the METAFONT prompt (’*’) type:
\\mode:=CanonCX; % or whatever printer you use

- Optionally select a magnification:
mag:=1; % or whatever you wish

- Input the ‘gnuplot‘-file:
input myfigures.mf

On a typical Unix machine there will usually be a script called "mf"
that executes virmf ’&plain’, so you probably can substitute mf for
virmf &plain. This will generate two files: mfput.tfm and mfput.$$$gf
(where $$$ indicates the resolution of your device). The above can be
conveniently achieved by typing everything on the command line, e.g.:
virmf ’&plain’ ’\\mode:=CanonCX; mag:=1; input myfigures.mf’ In this
case the output files will be named myfigures.tfm and myfigures.300gf.

- Generate a PK file from the GF file using gftopk:
gftopk myfigures.300gf myfigures.300pk

The name of the output file for gftopk depends on the DVI driver you

gnuplot 155 / 236

use. Ask your local TeX administrator about the naming conventions.
Next, either install the TFM and PK files in the appropriate
directories, or set your environment variables properly. Usually this
involves setting TEXFONTS to include the current directory and doing
the same thing for the environment variable that your DVI driver uses
(no standard name here...). This step is necessary so that TeX will
find the font metric file and your DVI driver will find the PK file.

- To include your pictures in your document you have to tell TeX the
font:

\\font\\gnufigs=myfigures

Each picture you made is stored in a single character. The first
picture is character 0, the second is character 1, and so on... After
doing the above step, you can use the pictures just like any other
characters. Therefore, to place pictures 1 and 2 centered in your
document, all you have to do is:

\\centerline{\\gnufigs\\char0}
\\centerline{\\gnufigs\\char1}

in plain TeX. For LaTeX you can, of course, use the picture
environment and place the picture wherever you wish by using the
\\makebox and \\put macros.

This conversion saves you a lot of time once you have generated the
font; TeX handles the pictures as characters and uses minimal time to
place them, and the documents you make change more often than the
pictures do. It also saves a lot of TeX memory. One last advantage of
using the METAFONT driver is that the DVI file really remains device
independent, because no \\special commands are used as in the eepic
and tpic drivers."

1.206 gnuplot.guide/mif

mif
...

The ‘mif‘ terminal driver produces Frame Maker MIF format version
3.00. It plots in MIF Frames with the size 15*10 cm, and plot
primitives with the same pen will be grouped in the same MIF group.
Plot primitives in a ‘gnuplot‘ page will be plotted in a MIF Frame, and
several MIF Frames are collected in one large MIF Frame. The MIF font
used for text is "Times".

Several options may be set in the MIF 3.00 driver.

Syntax:
set terminal mif {colour | monochrome} {polyline | vectors}

{help | ?}

‘colour‘ plots lines with line types >= 0 in colour (MIF sep. 2-7)
and ‘monochrome‘ plots all line types in black (MIF sep. 0).
‘polyline‘ plots curves as continuous curves and ‘vectors‘ plots curves
as collections of vectors.

gnuplot 156 / 236

help
and ‘?‘ print online help on standard

error output--both print a short description of the usage;
help
also

lists the options;

Examples:
set term mif colour polylines # defaults
set term mif # defaults
set term mif vectors
set term mif help"

1.207 gnuplot.guide/pbm

pbm
...

Several options may be set in the ‘pbm‘ terminal--the driver for
PBMplus.

Syntax:
set terminal pbm {<fontsize>} {<mode>}

where <fontsize> is ‘small‘, ‘medium‘, or ‘large‘ and <mode> is
‘monochrome‘, ‘gray‘ or ‘color‘. The default plot size is 640 pixels
wide and 480 pixels high; this may be changed by

size
.

The output of the ‘pbm‘ driver depends upon <mode>: ‘monochrome‘
produces a portable bitmap (one bit per pixel), ‘gray‘ a portable
graymap (three bits per pixel) and ‘color‘ a portable pixmap (color,
four bits per pixel).

The output of this driver can be used with Jef Poskanzer’s excellent
PBMPLUS package, which provides programs to convert the above PBMPLUS
formats to GIF, TIFF, MacPaint, Macintosh PICT, PCX, X11 bitmap and
many others. PBMPLUS may be obtained from ftp.x.org. The relevant
files have names that begin with "netpbm-1mar1994.p1"; they reside in
/contrib/utilities. The package can probably also be obtained from one
of the many sites that mirrors ftp.x.org.

Examples:
set terminal pbm small monochrome # defaults
set size 2,2; set terminal pbm color medium"

1.208 gnuplot.guide/png

gnuplot 157 / 236

png
...

The ‘png‘ terminal driver supports Portable Network Graphics. To
compile it, you will need the third-party libraries "libpng" and
"zlib"; both are available at ftp://ftp.uu.net/graphics/png. ‘png‘ has
two options.

Syntax:
set terminal png {small | medium | large}

{monochrome | gray | color}

The defaults are small (fontsize) and monochrome. Default size of
the output is 640*480 pixel."

1.209 gnuplot.guide/postscript

postscript
..........

Several options may be set in the ‘postscript‘ driver.

Syntax:
set terminal postscript {<mode>} {enhanced | noenhanced}

{color | monochrome} {solid | dashed}
{<duplexing>}
{"<fontname>"} {<fontsize>}

where <mode> is ‘landscape‘, ‘portrait‘, ‘eps‘ or ‘default‘; ‘solid‘
draws all plots with solid lines, overriding any dashed patterns;
<duplexing> is ‘defaultplex‘, ‘simplex‘ or ‘duplex‘ ("duplexing" in
PostScript is the ability of the printer to print on both sides of the
same page--don’t set this if your printer can’t do it); ‘enhanced‘
activates the "enhanced PostScript" features (subscripts, superscripts
and mixed fonts); ‘"<fontname>"‘ is the name of a valid PostScript
font; and ‘<fontsize>‘ is the size of the font in PostScript points.

‘default‘ mode sets all options to their defaults: ‘landscape‘,
‘monochrome‘, ‘dashed‘, ‘defaultplex‘, ‘noenhanced‘, "Helvetica" and
14pt.

Default size of a PostScript plot is 10 inches wide and 7 inches high.

‘eps‘ mode generates EPS (Encapsulated PostScript) output, which is
just regular PostScript with some additional lines that allow the file
to be imported into a variety of other applications. (The added lines
are PostScript comment lines, so the file may still be printed by
itself.) To get EPS output, use the ‘eps‘ mode and make only one plot
per file. In ‘eps‘ mode the whole plot, including the fonts, is
reduced to half of the default size.

Examples:
set terminal postscript default # old postscript
set terminal postscript enhanced # old enhpost

gnuplot 158 / 236

set terminal postscript landscape 22 # old psbig
set terminal postscript eps 14 # old epsf1
set terminal postscript eps 22 # old epsf2
set size 0.7,1.4; set term post portrait color "Times-Roman" 14

Linewidths and pointsizes may be changed with
linestyle
.

The ‘postscript‘ driver supports about 70 distinct pointtypes,
selectable through the ‘pointtype‘ option on

plot
and

linestyle
.

Several possibly useful files about ‘gnuplot‘’s PostScript are
included in the /docs/ps subdirectory of the ‘gnuplot‘ distribution and
at the distribution sites. These are "ps_symbols.gpi" (a ‘gnuplot‘
command file that, when executed, creates the file "ps_symbols.ps"
which shows all the symbols available through the ‘postscript‘
terminal), "ps_guide.ps" (a PostScript file that contains a summary of
the enhanced syntax and a page showing what the octal codes produce
with text and symbol fonts) and "ps_file.doc" (a text file that
contains a discussion of the organization of a PostScript file written
by ‘gnuplot‘).

A PostScript file is editable, so once ‘gnuplot‘ has created one,
you are free to modify it to your heart’s desire. See the "editing
postscript" section for some hints.

-- ENHANCED POSTSCRIPT --

Control Examples Explanation
^ a^x superscript
_ a_x subscript
@ @x or a@^b_c phantom box (occupies no width)
& &{space} inserts space of specified length

Braces can be used to place multiple-character text where a single
character is expected (e.g., 2^{10}). To change the font and/or size,
use the full form: {/[fontname][=fontsize | *fontscale] text}. Thus
{/Symbol=20 G} is a 20-point GAMMA) and {/*0.75 K} is a K at
three-quarters of whatever fontsize is currently in effect. (The ’/’
character MUST be the first character after the ’{’.)

If the encoding vector has been changed by
encoding
, the default

encoding vector can be used instead by following the slash with a dash.
This is unnecessary if you use the Symbol font, however--since /Symbol
uses its own encoding vector, ‘gnuplot‘ will not apply any other
encoding vector to it.

The phantom box is useful for a@^b_c to align superscripts and
subscripts but does not work well for overwriting an accent on a
letter. (To do the latter, it is much better to use ‘set encoding

gnuplot 159 / 236

iso_8859_1‘ to change to the ISO Latin-1 encoding vector, which
contains a large variety of letters with accents or other diacritical
marks.) Since the box is non-spacing, it is sensible to put the
shorter of the subscript or superscript in the box (that is, after the
@).

Space equal in length to a string can be inserted using the ’&’
character. Thus

’abc&{def}ghi’

would produce
’abc ghi’.

You can access special symbols numerically by specifying
\\character-code (in octal), e.g., {/Symbol \\245} is the
symbol for infinity.

You can escape control characters using \\, e.g., \\\\,
\\{, and so on.

But be aware that strings in double-quotes are parsed differently
than those enclosed in single-quotes. The major difference is that
backslashes may need to be doubled when in double-quoted strings.

Examples (these are hard to describe in words--try them!):
set xlabel ’Time (10^6 {/Symbol m}s)’
set title ’{/Symbol=18 \\362@_{/=9.6 0}^{/=12 x}} \\

{/Helvetica e^{-{/Symbol m}^2/2} d}{/Symbol m}’

The file "ps_guide.ps" in the /docs/ps subdirectory of the ‘gnuplot‘
source distribution contains more examples of the enhanced syntax.

-- EDITING POSTSCRIPT --

The PostScript language is a very complex language--far too complex
to describe in any detail in this document. Nevertheless there are
some things in a PostScript file written by ‘gnuplot‘ that can be
changed without risk of introducing fatal errors into the file.

For example, the PostScript statement "/Color true def" (written
into the file in response to the command ‘set terminal postscript
color‘), may be altered in an obvious way to generate a black-and-white
version of a plot. Similarly line colors, text colors, line weights
and symbol sizes can also be altered in straight-forward ways. Text
(titles and labels) can be edited to correct misspellings or to change
fonts. Anything can be repositioned, and of course anything can be
added or deleted, but modifications such as these may require deeper
knowledge of the PostScript language.

The organization of a PostScript file written by ‘gnuplot‘ is
discussed in the text file "ps_file.doc" in the /docs/ps subdirectory."

gnuplot 160 / 236

1.210 gnuplot.guide/pslatex_and_pstex

pslatex and pstex
.................

The ‘pslatex‘ and ‘pstex‘ drivers generate output for further
processing by LaTeX and TeX, respectively. Figures generated by
‘pstex‘ can be included in any plain-based format (including LaTeX).

Syntax:
set terminal pslatex | |pstex {<color>} {<dashed>} {<rotate>}

{auxfile} {<font_size>}

<color> is either ‘color‘ or ‘monochrome‘. <rotate> is either
‘rotate‘ or ‘norotate‘ and determines if the y-axis label is rotated.
<font_size> is used to scale the font from its usual size.

If ‘auxfile‘ is specified, it directs the driver to put the
PostScript commands into an auxiliary file instead of directly into the
LaTeX file. This is useful if your pictures are large enough that
dvips cannot handle them. The name of the auxiliary PostScript file is
derived from the name of the TeX file given on the

output
command; it

is determined by replacing the trailing ‘.tex‘ (actually just the final
extent in the file name) with ‘.ps‘ in the output file name, or, if the
TeX file has no extension, ‘.ps‘ is appended. Remember to close the
file before leaving ‘gnuplot‘.

All drivers for LaTeX offer a special way of controlling text
positioning: If any text string begins with ’{’, you also need to
include a ’}’ at the end of the text, and the whole text will be
centered both horizontally and vertically by LaTeX. -- If the text
string begins with ’[’, you need to continue it with: a position
specification (up to two out of t,b,l,r), ’]{’, the text itself, and
finally, ’}’. The text itself may be anything LaTeX can typeset as an
LR-box. \\rule{}{}’s may help for best positioning.

Examples:
set term pslatex monochrome dashed rotate # set to defaults

To write the PostScript commands into the file "foo.ps":
set term pslatex auxfile
set output "foo.tex"; plot ...: set output

About label positioning: Use gnuplot defaults (mostly sensible, but
sometimes not really best):

set title ’\\LaTeX\\ -- $ \\gamma $’

Force centering both horizontally and vertically:
set label ’{\\LaTeX\\ -- $ \\gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\\LaTeX\\ -- $ \\gamma $}’

The other label - account for long ticlabels:

gnuplot 161 / 236

set ylabel ’[r]{\\LaTeX\\ -- $ \\gamma $\\rule{7mm}{0pt}’

Linewidths and pointsizes may be changed with
linestyle
."

1.211 gnuplot.guide/pstricks

pstricks
........

The ‘pstricks‘ driver is intended for use with the "pstricks.sty"
macro package for LaTeX. It is an alternative to the ‘eepic‘ and
‘latex‘ drivers. You need "pstricks.sty", and, of course, a printer
that understands PostScript, or a converter such as Ghostscript.

PSTricks is available via anonymous ftp from the /pub directory at
Princeton.EDU. This driver definitely does not come close to using the
full capability of the PSTricks package.

Syntax:
set terminal pstricks {hacktext | nohacktext} {unit | nounit}

The first option invokes an ugly hack that gives nicer numbers; the
second has to do with plot scaling. The defaults are ‘hacktext‘ and
‘nounit‘."

1.212 gnuplot.guide/qms

qms
...

The ‘qms‘ terminal driver supports the QMS/QUIC Laser printer, the
Talaris 1200 and others. It has no options."

1.213 gnuplot.guide/regis

regis
.....

The ‘regis‘ terminal device generates output in the REGIS graphics
language. It has the option of using 4 (the default) or 16 colors.

Syntax:
set terminal regis {4 | 16}"

gnuplot 162 / 236

1.214 gnuplot.guide/sun

sun
...

The ‘sun‘ terminal driver supports the SunView window system. It
has no options."

1.215 gnuplot.guide/tek410x

tek410x
.......

The ‘tek410x‘ terminal driver supports the 410x and 420x family of
Tektronix terminals. It has no options."

1.216 gnuplot.guide/table

table
.....

Instead of producing a graph, the ‘table‘ terminal prints out the
points on which a graph would be based, i.e., the results of processing
the

plot
or ‘splot‘ command, in a multicolumn ASCII table of X Y {Z} R

values. The character R takes on one of three values: "i" if the point
is in the active range, "o" if it is out-of-range, or "u" if it is
undefined. The data format is determined by the format of the axis
labels (see ‘set format‘).

For those times when you want the numbers, you can display them on
the screen or save them to a file. This can be useful if you want to
generate contours and then save them for further use, perhaps for
plotting with

plot
; see
contour
for an example. The same method can

be used to save interpolated data (see
samples
and

dgrid3d
)."

gnuplot 163 / 236

1.217 gnuplot.guide/tek40

tek40
.....

This family of terminal drivers supports a variety of VT-like
terminals. ‘tek40xx‘ supports Tektronix 4010 and others as well as
most TEK emulators; ‘vttek‘ supports VT-like tek40xx terminal
emulators; ‘kc-tek40xx‘ supports MS-DOS Kermit Tek4010 terminal
emulators in color: ‘km-tek40xx‘ supports them in monochrome; ‘selanar‘
supports Selanar graphics; and ‘bitgraph‘ supports BBN Bitgraph
terminals. None have any options."

1.218 gnuplot.guide/texdraw

texdraw
.......

The ‘texdraw‘ terminal driver supports the LaTeX texdraw
environment. It is intended for use with "texdraw.sty" and
"texdraw.tex" in the texdraw package.

It has no options."

1.219 gnuplot.guide/tgif

tgif
....

Tgif is an X11-based drawing tool--it has nothing to do with GIF.

The ‘tgif‘ driver supports different pointsizes (with
pointsize
),

different label fonts and font sizes (e.g. ‘set label "Hallo" at x,y
font "Helvetica,34"‘) and multiple graphs on the page. The proportions
of the axes are not changed.

Syntax:
set terminal tgif {portrait | landscape} {<[x,y]>}

{solid | dashed}
{"<fontname>"} {<fontsize>}

where <[x,y]> specifies the number of graphs in the x and y
directions on the page, "<fontname>" is the name of a valid PostScript
font, and <fontsize> specifies the size of the PostScript font.
Defaults are ‘portrait‘, ‘[1,1]‘, ‘dashed‘, ‘"Helvetica"‘, and ‘18‘.

The ‘solid‘ option is usually prefered if lines are colored, as they
often are in the editor. Hardcopy will be black-and-white, so ‘dashed‘

gnuplot 164 / 236

should be chosen for that.

Multiplot is implemented in two different ways.

The first multiplot implementation is the standard gnuplot multiplot
feature:

set terminal tgif
set output "file.obj"
set multiplot
set origin x01,y01
set size xs,ys
plot ...

...
set origin x02,y02
plot ...
set nomultiplot

See
multiplot
for further information.

The second version is the [x,y] option for the driver itself. The
advantage of this implementation is that everything is scaled and
placed automatically without the need for setting origins and sizes;
the graphs keep their natural x/y proportions of 3/2 (or whatever is
fixed by

size
).

If both multiplot methods are selected, the standard method is
chosen and a warning message is given.

Examples of single plots (or standard multiplot):
set terminal tgif # defaults
set terminal tgif "Times-Roman" 24
set terminal tgif landscape
set terminal tgif landscape solid

Examples using the built-in multiplot mechanism:
set terminal tgif portrait [2,4] # portrait; 2 plots in the x-

and 4 in the y-direction
set terminal tgif [1,2] # portrait; 1 plot in the x-

and 2 in the y-direction
set terminal tgif landscape [3,3] # landscape; 3 plots in both

directions"

1.220 gnuplot.guide/tkcanvas

tkcanvas
........

This terminal driver generates Tk canvas widget commands based on

gnuplot 165 / 236

Tcl/Tk (default) or Perl. To use it, rebuild ‘gnuplot‘ (after
uncommenting or inserting the appropriate line in "term.h"), then

gnuplot> set term tkcanvas {perltk} {interactive}
gnuplot> set output ’plot.file’

After invoking "wish", execute the following sequence of Tcl/Tk
commands:

% source plot.file
% canvas .c
% pack .c
% gnuplot .c

Or, for Perl/Tk use a program like this:

use Tk;
my $top = MainWindow->new;
my $c = $top->Canvas;
$c->pack();
do "plot.pl";
gnuplot->($c);
MainLoop;

The code generated by ‘gnuplot‘ creates a procedure called "gnuplot"
that takes the name of a canvas as its argument. When the procedure is
called, it clears the canvas, finds the size of the canvas and draws
the plot in it, scaled to fit.

For 2-dimensional plotting (
plot
) two additional procedures are

defined: "gnuplot_plotarea" will return a list containing the borders
of the plotting area "xleft, xright, ytop, ybot" in canvas screen
coordinates, while the ranges of the two axes "x1min, x1max, y1min,
y1max, x2min, x2max, y2min, y2max" in plot coordinates can be obtained
calling "gnuplot_axisranges". If the "interactive" option is
specified, mouse clicking on a line segment will print the coordinates
of its midpoint to stdout. Advanced actions can happen instead if the
user supplies a procedure named "user_gnuplot_coordinates", which takes
the following arguments: "win id x1s y1s x2s y2s x1e y1e x2e y2e x1m
y1m x2m y2m", the name of the canvas and the id of the line segment
followed by the coordinates of its start and end point in the two
possible axis ranges; the coordinates of the midpoint are only filled
for logarithmic axes.

The current version of ‘tkcanvas‘ supports neither
multiplot
nor

replot
."

gnuplot 166 / 236

1.221 gnuplot.guide/tpic

tpic
....

The ‘tpic‘ terminal driver supports the LaTeX picture environment
with tpic \\specials. It is an alternative to the ‘latex‘ and
‘eepic‘ terminal drivers. Options are the point size, line width, and
dot-dash interval.

Syntax:
set terminal tpic <pointsize> <linewidth> <interval>

where
pointsize
and ‘linewidth‘ are integers in milli-inches and

‘interval‘ is a float in inches. If a non-positive value is specified,
the default is chosen: pointsize = 40, linewidth = 6, interval = 0.1.

All drivers for LaTeX offer a special way of controlling text
positioning: If any text string begins with ’{’, you also need to
include a ’}’ at the end of the text, and the whole text will be
centered both horizontally and vertically by LaTeX. -- If the text
string begins with ’[’, you need to continue it with: a position
specification (up to two out of t,b,l,r), ’]{’, the text itself, and
finally, ’}’. The text itself may be anything LaTeX can typeset as an
LR-box. \\rule{}{}’s may help for best positioning.

Examples: About label positioning: Use gnuplot defaults (mostly
sensible, but sometimes not really best):

set title ’\\LaTeX\\ -- $ \\gamma $’

Force centering both horizontally and vertically:
set label ’{\\LaTeX\\ -- $ \\gamma $}’ at 0,0

Specify own positioning (top here):
set xlabel ’[t]{\\LaTeX\\ -- $ \\gamma $}’

The other label - account for long ticlabels:
set ylabel ’[r]{\\LaTeX\\ -- $ \\gamma $\\rule{7mm}{0pt}’"

1.222 gnuplot.guide/x11

x11
...

‘gnuplot‘ provides the ‘x11‘ terminal type for use with X servers.
This terminal type is set automatically at startup if the ‘DISPLAY‘
environment variable is set, if the ‘TERM‘ environment variable is set
to ‘xterm‘, or if the ‘-display‘ command line option is used.

Syntax:

gnuplot 167 / 236

set terminal x11 {reset} {<n>}

Multiple plot windows are supported: ‘set terminal x11 <n>‘ directs
the output to plot window number n. If n>0, the terminal number will be
appended to the window title and the icon will be labeled ‘gplt <n>‘.
The active window may distinguished by a change in cursor (from default
to crosshair.)

Plot windows remain open even when the ‘gnuplot‘ driver is changed
to a different device. A plot window can be closed by pressing the
letter q while that window has input focus, or by choosing ‘close‘ from
a window manager menu. All plot windows can be closed by specifying

reset
, which actually terminates the subprocess which maintains the

windows (unless ‘-persist‘ was specified).

Plot windows will automatically be closed at the end of the session
unless the ‘-persist‘ option was given.

The size or aspect ratio of a plot may be changed by resizing the
‘gnuplot‘ window.

Linewidths and pointsizes may be changed from within ‘gnuplot‘ with

linestyle
.

For terminal type ‘x11‘, ‘gnuplot‘ accepts (when initialized) the
standard X Toolkit options and resources such as geometry, font, and
name from the command line arguments or a configuration file. See the
X(1) man page (or its equivalent) for a description of such options.

A number of other ‘gnuplot‘ options are available for the ‘x11‘
terminal. These may be specified either as command-line options when
‘gnuplot‘ is invoked or as resources in the configuration file
"/.Xdefaults". They are set upon initialization and cannot be altered
during a ‘gnuplot‘ session.

-- COMMAND-LINE_OPTIONS --

In addition to the X Toolkit options, the following options may be
specified on the command line when starting ‘gnuplot‘ or as resources
in your ".Xdefaults" file:

‘-clear‘ requests that the window be cleared momentarily before a
new plot is displayed.

‘-gray‘ requests grayscale rendering on grayscale or color displays.
(Grayscale displays receive monochrome rendering by default.)

‘-mono‘ forces monochrome rendering on color displays.
‘-persist‘ plot windows survive after main gnuplot program exits
‘-raise‘ raise plot window after each plot
‘-noraise‘ do not raise plot window after each plot
‘-tvtwm‘ requests that geometry specifications for position of the

window be made relative to the currently displayed portion
of the virtual root.

gnuplot 168 / 236

The options are shown above in their command-line syntax. When
entered as resources in ".Xdefaults", they require a different syntax.

Example:
gnuplot*gray: on

‘gnuplot‘ also provides a command line option (‘-pointsize <v>‘) and
a resource, ‘gnuplot*pointsize: <v>‘, to control the size of points
plotted with the ‘points‘ plotting style. The value ‘v‘ is a real
number (greater than 0 and less than or equal to ten) used as a scaling
factor for point sizes. For example, ‘-pointsize 2‘ uses points twice
the default size, and ‘-pointsize 0.5‘ uses points half the normal size.

-- MONOCHOME_OPTIONS --

For monochrome displays, ‘gnuplot‘ does not honor foreground or
background colors. The default is black-on-white. ‘-rv‘ or
‘gnuplot*reverseVideo: on‘ requests white-on-black.

-- COLOR_RESOURCES --

For color displays, ‘gnuplot‘ honors the following resources (shown
here with their default values) or the greyscale resources. The values
may be color names as listed in the X11 rgb.txt file on your system,
hexadecimal RGB color specifications (see X11 documentation), or a
color name followed by a comma and an ‘intensity‘ value from 0 to 1.
For example, ‘blue, 0.5‘ means a half intensity blue.

gnuplot*background: white
gnuplot*textColor: black
gnuplot*borderColor: black
gnuplot*axisColor: black
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral

The command-line syntax for these is, for example,

Example:
gnuplot -background coral

-- GRAYSCALE_RESOURCES --

When ‘-gray‘ is selected, ‘gnuplot‘ honors the following resources
for grayscale or color displays (shown here with their default values).
Note that the default background is black.

gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100

gnuplot 169 / 236

gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30

-- LINE_RESOURCES --

‘gnuplot‘ honors the following resources for setting the width (in
pixels) of plot lines (shown here with their default values.) 0 or 1
means a minimal width line of 1 pixel width. A value of 2 or 3 may
improve the appearance of some plots.

gnuplot*borderWidth: 2
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0

‘gnuplot‘ honors the following resources for setting the dash style
used for plotting lines. 0 means a solid line. A two-digit number
‘jk‘ (‘j‘ and ‘k‘ are >= 1 and <= 9) means a dashed line with a
repeated pattern of ‘j‘ pixels on followed by ‘k‘ pixels off. For
example, ’16’ is a "dotted" line with one pixel on followed by six
pixels off. More elaborate on/off patterns can be specified with a
four-digit value. For example, ’4441’ is four on, four off, four on,
one off. The default values shown below are for monochrome displays or
monochrome rendering on color or grayscale displays. For color
displays, the default for each is 0 (solid line) except for
‘axisDashes‘ which defaults to a ’16’ dotted line.

gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13

1.223 gnuplot.guide/xlib

xlib
....

gnuplot 170 / 236

The ‘xlib‘ terminal driver supports the X11 Windows System. It
generates gnulib_x11 commands. ‘set term x11‘ behaves similarly to
‘set terminal xlib; set output "|gnuplot_x11"‘. ‘xlib‘ has no options,
but see ‘x11‘."

1.224 gnuplot.guide/tics

tics

The ‘set tics‘ command can be used to change the tics to be drawn
outwards.

Syntax:
set tics {<direction>}
show tics

where <direction> may be ‘in‘ (the default) or ‘out‘.

See also
xtics
for more control of major (labelled) tic marks and

mxtics
for control of minor tic marks.

1.225 gnuplot.guide/ticslevel

ticslevel

Using ‘splot‘, one can adjust the relative height of the vertical
(Z) axis using

ticslevel
. The numeric argument provided specifies the

location of the bottom of the scale (as a fraction of the z-range)
above the xy-plane. The default value is 0.5. Negative values are
permitted, but tic labels on the three axes may overlap.

To place the xy-plane at a position ’pos’ on the z-axis,
ticslevel
should be set equal to (pos - zmin) / (zmin - zmax).

Syntax:
set ticslevel {<level>}
show tics

See also

gnuplot 171 / 236

view
.

1.226 gnuplot.guide/ticscale

ticscale

The size of the tic marks can be adjusted with
ticscale
.

Syntax:
set ticscale {<major> {<minor>}}
show tics

If <minor> is not specified, it is 0.5*<major>. The default size is
1.0 for major tics and 0.5 for minor tics. Note that it is possible to
have the tic marks pointing outward by specifying a negative size.

1.227 gnuplot.guide/timestamp

timestamp

The command
timestamp
places the time and date of the plot in the

left margin.

Syntax:
set timestamp {"<format>"} {top|bottom} {{no}rotate}

{<xoff>}{,<yoff>} {""}
set notimestamp
show timestamp

The format string allows you to choose the format used to write the
date and time. Its default value is what asctime() uses: "%a %b %d
%H:%M:%S %Y" (weekday, month name, day of the month, hours, minutes,
seconds, four-digit year). With ‘top‘ or ‘bottom‘ you can place the
timestamp at the top or bottom of the left margin (default: bottom).
‘rotate‘ lets you write the timestamp vertically, if your terminal
supports vertical text. The constants <xoff> and <off> are offsets
from the default position given in character screen coordinates.
 is used to specify the font with which the time is to be written.

The abbreviation ‘time‘ may be used in place of
timestamp

gnuplot 172 / 236

.

Example:
set timestamp "%d/%m/%y %H:%M" 80,-2 "Helvetica"

See
timefmt
for more information about time format strings.

1.228 gnuplot.guide/timefmt

timefmt

This command applies to timeseries where data are composed of
dates/times. It has no meaning unless the command ‘set xdata time‘ is
given also.

Syntax:
set timefmt "<format string>"
show timefmt

The string argument tells ‘gnuplot‘ how to read timedata from the
datafile. The valid formats are:

Format Explanation
%d day of the month, 1--31
%m month of the year, 1--12
%y year, 0--99
%Y year, 4-digit
%j day of the year, 1--365
%H hour, 0--24
%M minute, 0--60
%S second, 0--60
%b three-character abbreviation of the name of the month
%B name of the month

Any character is allowed in the string, but must match exactly. \t
(tab) is recognized. Backslash-octals (\nnn) are converted to char.
If there is no separating character between the time/date elements,
then %d, %m, %y, %H, %M and %S read two digits each, %Y reads four
digits and %j reads three digits. %b requires three characters, and %B
requires as many as it needs.

Spaces are treated slightly differently. A space in the string
stands for zero or more whitespace characters in the file. That is,
"%H %M" can be used to read "1220" and "12 20" as well as "12 20".

Each set of non-blank characters in the timedata counts as one
column in the ‘using n:n‘ specification. Thus ‘11:11 25/12/76 21.0‘
consists of three columns. To avoid confusion, ‘gnuplot‘ requires that
you provide a complete

using

gnuplot 173 / 236

specification if your file contains
timedata.

Since ‘gnuplot‘ cannot read non-numerical text, if the date format
includes the day or month in words, the format string must exclude this
text. But it can still be printed with the "%a", "%A", "%b", or "%B"
specifier: see ‘set format‘ for more details about these and other
options for printing timedata. (‘gnuplot‘ will determine the proper
month and weekday from the numerical values.)

See also
xdata
and ‘Time/date‘ for more information.

Example:
set timefmt "%d/%m/%Y\t%H:%M"

tells ‘gnuplot‘ to read date and time separated by tab. (But look
closely at your data--what began as a tab may have been converted to
spaces somewhere along the line; the format string must match what is
actually in the file.)
Time Data Demo (http://www.gnuplot.vt.edu/gnuplot/gpdocs/timedat.html)

1.229 gnuplot.guide/title_

title

The ‘set title‘ command produces a plot title that is centered at
the top of the plot. ‘set title‘ is a special case of

label
.

Syntax:
set title {"<title-text>"} {<xoff>}{,<yoff>} {",{<size>}"}
show title

Specifying constants <xoff> or <yoff> as optional offsets for the
title will move the title <xoff> or <yoff> character screen coordinates
(not graph coordinates). For example, "‘set title ,-1‘" will change
only the y offset of the title, moving the title down by roughly the
height of one character.

 is used to specify the font with which the title is to be
written; the units of the font <size> depend upon which terminal is
used.

‘set title‘ with no parameters clears the title.

See ‘syntax‘ for details about the processing of backslash sequences
and the distinction between single- and double-quotes.

gnuplot 174 / 236

1.230 gnuplot.guide/tmargin

tmargin

The command
tmargin
sets the size of the top margin. Please see

margin
for details.

1.231 gnuplot.guide/trange

trange

The
trange
command sets the parametric range used to compute x and y

values when in parametric or polar modes. Please see
xrange
for

details.

1.232 gnuplot.guide/urange

urange

The
urange
and

vrange
commands set the parametric ranges used to

compute x, y, and z values when in ‘splot‘ parametric mode. Please see

xrange
for details.

gnuplot 175 / 236

1.233 gnuplot.guide/variables

variables

The
variables
command lists all user-defined variables and their

values.

Syntax:
show variables

1.234 gnuplot.guide/version

version

The
version
command lists the version of gnuplot being run, its last

modification date, the copyright holders, and email addresses for the
FAQ, the info-gnuplot mailing list, and reporting bugs-in short, the
information listed on the screen when the program is invoked
interactively.

Syntax:
show version {long}

When the ‘long‘ option is given, it also lists the operating system,
the compilation options used when ‘gnuplot‘ was installed, the location
of the help file, and (again) the useful email addresses.

1.235 gnuplot.guide/view

view

The
view
command sets the viewing angle for ‘splot‘s. It controls

how the 3-d coordinates of the plot are mapped into the 2-d screen
space. It provides controls for both rotation and scaling of the
plotted data, but supports orthographic projections only.

Syntax:
set view <rot_x> {,{<rot_z>}{,{<scale>}{,<scale_z>}}}
show view

gnuplot 176 / 236

where <rot_x> and <rot_z> control the rotation angles (in degrees)
in a virtual 3-d coordinate system aligned with the screen such that
initially (that is, before the rotations are performed) the screen
horizontal axis is x, screen vertical axis is y, and the axis
perpendicular to the screen is z. The first rotation applied is
<rot_x> around the x axis. The second rotation applied is <rot_z>
around the new z axis.

<rot_x> is bounded to the [0:180] range with a default of 60
degrees, while <rot_z> is bounded to the [0:360] range with a default
of 30 degrees. <scale> controls the scaling of the entire ‘splot‘,
while <scale_z> scales the z axis only. Both scales default to 1.0.

Examples:
set view 60, 30, 1, 1
set view ,,0.5

The first sets all the four default values. The second changes only
scale, to 0.5.

See also
ticslevel
.

1.236 gnuplot.guide/vrange

vrange

The
urange
and

vrange
commands set the parametric ranges used to

compute x, y, and z values when in ‘splot‘ parametric mode. Please see

xrange
for details.

1.237 gnuplot.guide/x2data

x2data

The
x2data
command sets data on the x2 (top) axis to timeseries

gnuplot 177 / 236

(dates/times). Please see
xdata
.

1.238 gnuplot.guide/x2dtics

x2dtics

The
x2dtics
command changes tics on the x2 (top) axis to days of the

week. Please see
xdtics
for details.

1.239 gnuplot.guide/x2label

x2label

The
x2label
command sets the label for the x2 (top) axis. Please

see
xlabel
.

1.240 gnuplot.guide/x2mtics

x2mtics

The
x2mtics
command changes tics on the x2 (top) axis to months of

the year. Please see
xmtics
for details.

gnuplot 178 / 236

1.241 gnuplot.guide/x2range

x2range

The
x2range
command sets the horizontal range that will be

displayed on the x2 (top) axis. Please see
xrange
for details.

1.242 gnuplot.guide/x2tics

x2tics

The
x2tics
command controls major (labelled) tics on the x2 (top)

axis. Please see
xtics
for details.

1.243 gnuplot.guide/x2zeroaxis

x2zeroaxis

The
x2zeroaxis
command draws a line at the origin of the x2 (top)

axis (y2 = 0). For details, please see
zeroaxis
.

1.244 gnuplot.guide/xdata

xdata

This command sets the datatype on the x axis to time/date. A
similar command does the same thing for each of the other axes.

gnuplot 179 / 236

Syntax:
set xdata {time}
show xdata

The same syntax applies to
ydata
,
zdata
,
x2data
and

y2data
.

The ‘time‘ option signals that the datatype is indeed time/date. If
the option is not specified, the datatype reverts to normal.

See
timefmt
to tell ‘gnuplot‘ how to read date or time data. The

time/date is converted to seconds from start of the century. There is
currently only one timefmt, which implies that all the time/date
columns must confirm to this format. Specification of ranges should be
supplied as quoted strings according to this format to avoid
interpretation of the time/date as an expression.

The function ’strftime’ (type "man strftime" on unix to look it up)
is used to print tic-mark labels. ‘gnuplot‘ tries to figure out a
reasonable format for this unless the ‘set format x "string"‘ has
supplied something that does not look like a decimal format (more than
one ’%’ or neither %f nor %g).

See also ‘Time/date‘ for more information.

1.245 gnuplot.guide/xdtics

xdtics

The
xdtics
commands converts the x-axis tic marks to days of the

week where 0=Sun and 6=Sat. Overflows are converted modulo 7 to dates.
‘set noxdtics‘ returns the labels to their default values. Similar
commands do the same things for the other axes.

Syntax:
set xdtics
set noxdtics
show xdtics

The same syntax applies to

gnuplot 180 / 236

ydtics
,
zdtics
,
x2dtics
and

y2dtics
.

See also the ‘set format‘ command.

1.246 gnuplot.guide/xlabel

xlabel

The
xlabel
command sets the x axis label. Similar commands set

labels on the other axes.

Syntax:
set xlabel {"<label>"} {<xoff>}{,<yoff>} {"{,<size>}"}
show xlabel

The same syntax applies to
x2label
,
ylabel
,
y2label
and

zlabel
.

Specifying the constants <xoff> or <yoff> as optional offsets for a
label will move it <xoff> or <yoff> character widths or heights. For
example, "‘ set xlabel -1‘" will change only the x offset of the
xlabel, moving the label roughly one character width to the left. The
size of a character depends on both the font and the terminal.

 is used to specify the font in which the label is written;
the units of the font <size> depend upon which terminal is used.

To clear a label, put no options on the command line, e.g.,
"

y2label
".

The default positions of the axis labels are as follows:

xlabel: The x-axis label is centered below the bottom axis.

gnuplot 181 / 236

ylabel: The position of the y-axis label depends on the terminal,
and can be one of the following three positions:

1. Horizontal text flushed left at the top left of the plot.
Terminals that cannot rotate text will probably use this method. If

x2tics
is also in use, the ylabel may overwrite the left-most x2tic

label. This may be remedied by adjusting the ylabel position or the
left margin.

2. Vertical text centered vertically at the left of the plot.
Terminals that can rotate text will probably use this method.

3. Horizontal text centered vertically at the left of the plot. The
EEPIC, LaTeX and TPIC drivers use this method. The user must insert
line breaks using \\ to prevent the ylabel from overwriting the plot.
To produce a vertical row of characters, add \\ between every
printing character (but this is ugly).

zlabel: The z-axis label is centered along the z axis and placed in
the space above the grid level.

y2label: The y2-axis label is placed to the right of the y2 axis.
The position is terminal-dependent in the same manner as is the y-axis
label.

x2label: The x2-axis label is placed above the top axis but below
the plot title. It is also possible to create an x2-axis label by
using new-line characters to make a multi-line plot title, e.g.,

set title "This is the title\n\nThis is the x2label"

Note that double quotes must be used. The same font will be used
for both lines, of course.

If you are not satisfied with the default position of an axis label,
use

label
instead-that command gives you much more control over where

text is placed.

Please see ‘set syntax‘ for further information about backslash
processing and the difference between single- and double-quoted strings.

1.247 gnuplot.guide/xmtics

xmtics

The
xmtics
commands converts the x-axis tic marks to months of the

gnuplot 182 / 236

year where 1=Jan and 12=Dec. Overflows are converted modulo 12 to
months. The tics are returned to their default labels by ‘set
noxmtics‘. Similar commands perform the same duties for the other axes.

Syntax:
set xmtics
set noxmtics
show xmtics

The same syntax applies to
x2mtics
,
ymtics
,
y2mtics
, and
zmtics
.

See also the ‘set format‘ command.

1.248 gnuplot.guide/xrange

xrange

The
xrange
command sets the horizontal range that will be displayed.

A similar command exists for each of the other axes, as well as for the
polar radius r and the parametric variables t, u, and v.

Syntax:
set xrange [{{<min>}:{<max>}}] {{no}reverse} {{no}writeback}
show xrange

where <min> and <max> terms are constants, expressions or an
asterisk to set autoscaling. If the data are time/date, you must give
the range as a quoted string according to the

timefmt
format. Any

value omitted will not be changed.

The same syntax applies to
yrange
,
zrange
,
x2range
,
y2range
,

gnuplot 183 / 236

rrange
,
trange
,
urange
and

vrange
.

The ‘reverse‘ option reverses the direction of the axis, e.g., ‘set
xrange [0:1] reverse‘ will produce an axis with 1 on the left and 0 on
the right. This is identical to the axis produced by ‘set xrange
[1:0]‘, of course. ‘reverse‘ is intended primarily for use with

autoscale
.

The ‘writeback‘ option essentially saves the range found by

autoscale
in the buffers that would be filled by

xrange
. This is

useful if you wish to plot several functions together but have the
range determined by only some of them. The ‘writeback‘ operation is
performed during the

plot
execution, so it must be specified before

that command. For example,

set xrange [-10:10]
set yrange [] writeback
plot sin(x)
set noautoscale y
replot x/2

results in a yrange of [-1:1] as found only from the range of
sin(x); the [-5:5] range of x/2 is ignored. Executing

yrange
after

each command in the above example should help you understand what is
going on.

In 2-d,
xrange
and

yrange
determine the extent of the axes,

trange
determines the range of the parametric variable in parametric mode ←↩

or
the range of the angle in polar mode. Similarly in parametric 3-d,

xrange
,
yrange
, and

gnuplot 184 / 236

zrange
govern the axes and

urange
and

vrange
govern the parametric variables.

In polar mode,
rrange
determines the radial range plotted. <rmin>

acts as an additive constant to the radius, whereas <rmax> acts as a
clip to the radius--no point with radius greater than <rmax> will be
plotted.

xrange
and

yrange
are affected--the ranges can be set as if

the graph was of r(t)-rmin, with rmin added to all the labels.

Any range may be partially or totally autoscaled, although it may
not make sense to autoscale a parametric variable unless it is plotted
with data.

Ranges may also be specified on the
plot
command line. A range

given on the plot line will be used for that single
plot
command; a

range given by a ‘set‘ command will be used for all subsequent plots
that do not specify their own ranges. The same holds true for ‘splot‘.

Examples:

To set the xrange to the default:
set xrange [-10:10]

To set the yrange to increase downwards:
set yrange [10:-10]

To change zmax to 10 without affecting zmin (which may still be
autoscaled):

set zrange [:10]

To autoscale xmin while leaving xmax unchanged:
set xrange [*:]

1.249 gnuplot.guide/xtics

xtics

Fine control of the major (labelled) tics on the x axis is possible

gnuplot 185 / 236

with the
xtics
command. The tics may be turned off with the ‘set

noxtics‘ command, and may be turned on (the default state) with
xtics
.

Similar commands control the major tics on the y, z, x2 and y2 axes.

Syntax:
set xtics {axis | border} {{no}mirror} {{no}rotate}

{ autofreq
| <incr>
| <start>, <incr> {,<end>}
| ({"<label>"} <pos> {,{"<label>"} <pos>}...) }

set noxtics
show xtics

The same syntax applies to
ytics
,
ztics
,
x2tics
and

y2tics
.

‘axis‘ or
border
tells ‘gnuplot‘ to put the tics (both the tics

themselves and the accompanying labels) along the axis or the border,
respectively. If the axis is very close to the border, the ‘axis‘
option can result in tic labels overwriting other text written in the
margin.

‘mirror‘ tells ‘gnuplot‘ to put unlabelled tics at the same
positions on the opposite border. ‘nomirror‘ does what you think it
does.

‘rotate‘ asks ‘gnuplot‘ to rotate the text through 90 degrees, which
will be done if the terminal driver in use supports text rotation.
‘norotate‘ cancels this.

The defaults are ‘border mirror norotate‘ for tics on the x and y
axes, and ‘border nomirror norotate‘ for tics on the x2 and y2 axes.
For the z axis, the the ‘{axis | border}‘ option is not available and
the default is ‘nomirror‘. If you do want to mirror the z-axis tics,
you might want to create a bit more room for them with

border
.

xtics
with no options restores the default border or axis if xtics are

being displayed; otherwise it has no effect. Any previously specified
tic frequency or position {and labels} are retained.

gnuplot 186 / 236

Positions of the tics are calculated automatically by default or if
the ‘autofreq‘ option is given; otherwise they may be specified in
either of two forms:

The implicit <start>, <incr>, <end> form specifies that a series of
tics will be plotted on the axis between the values <start> and <end>
with an increment of <incr>. If <end> is not given, it is assumed to
be infinity. The increment may be negative. If neither <start> nor
<end> is given, <start> is assumed to be negative infinity, <end> is
assumed to be positive infinity, and the tics will be drawn at integral
multiples of <step>. If the axis is logarithmic, the increment will be
used as a multiplicative factor.

Examples:

Make tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.
set xtics 0,.5,10

Make tics at ..., -10, -5, 0, 5, 10, ...
set xtics 5

Make tics at 1, 100, 1e4, 1e6, 1e8.
set logscale x; set xtics 1,100,10e8

The explicit ("<label>" <pos>, ...) form allows arbitrary tic
positions or non-numeric tic labels. A set of tics is a set of
positions, each with its own optional label. Note that the label is a
string enclosed by quotes. It may be a constant string, such as
"hello", may contain formatting information for converting the position
into its label, such as "%3f clients", or may be empty, "". See ‘set
format‘ for more information. If no string is given, the default label
(numerical) is used. In this form, the tics do not need to be listed
in numerical order.

Examples:
set xtics ("low" 0, "medium" 50, "high" 100)
set xtics (1,2,4,8,16,32,64,128,256,512,1024)
set ytics ("bottom" 0, "" 10, "top" 20)

In the second example, all tics are labelled. In the third, only
the end tics are labelled.

However they are specified, tics will only be plotted when in range.

Format (or omission) of the tic labels is controlled by ‘set
format‘, unless the explicit text of a labels is included in the ‘set
xtic (‘<label>‘)‘ form.

Minor (unlabelled) tics can be added by the
mxtics
command.

In case of timeseries data, position values must be given as quoted
dates or times according to the format

timefmt
. If the <start>,

<incr>, <end> form is used, <start> and <end> must be given according

gnuplot 187 / 236

to
timefmt
, but <incr> must be in seconds. Times will be written out

according to the format given on ‘set format‘, however.

Examples:
set xdata time
set timefmt "%d/%m"
set format x "%b %d"
set xrange ["01/12":"06/12"]
set xtics "01/12", 172800, "05/12"

set xdata time
set timefmt "%d/%m"
set format x "%b %d"
set xrange ["01/12":"06/12"]
set xtics ("01/12", "" "03/12", "05/12")

Both of these will produce tics "Dec 1", "Dec 3", and "Dec 5", but
in the second example the tic at "Dec 3" will be unlabelled.

1.250 gnuplot.guide/xzeroaxis

xzeroaxis

The
xzeroaxis
command draws a line at y = 0. For details, please

see
zeroaxis
.

1.251 gnuplot.guide/y2data

y2data

The
y2data
command sets y2 (right-hand) axis data to timeseries

(dates/times). Please see
xdata
.

gnuplot 188 / 236

1.252 gnuplot.guide/y2dtics

y2dtics

The
y2dtics
command changes tics on the y2 (right-hand) axis to

days of the week. Please see
xdtics
for details.

1.253 gnuplot.guide/y2label

y2label

The
y2dtics
command sets the label for the y2 (right-hand) axis.

Please see
xlabel
.

1.254 gnuplot.guide/y2mtics

y2mtics

The
y2mtics
command changes tics on the y2 (right-hand) axis to

months of the year. Please see
xmtics
for details.

1.255 gnuplot.guide/y2range

y2range

The
y2range

gnuplot 189 / 236

command sets the vertical range that will be displayed
on the y2 (right-hand) axis. Please see

xrange
for details.

1.256 gnuplot.guide/y2tics

y2tics

The
y2tics
command controls major (labelled) tics on the y2

(right-hand) axis. Please see
xtics
for details.

1.257 gnuplot.guide/y2zeroaxis

y2zeroaxis

The
y2zeroaxis
command draws a line at the origin of the y2

(right-hand) axis (x2 = 0). For details, please see
zeroaxis
.

1.258 gnuplot.guide/ydata

ydata

Sets y-axis data to timeseries (dates/times). Please see
xdata
.

gnuplot 190 / 236

1.259 gnuplot.guide/ydtics

ydtics

The
ydtics
command changes tics on the y axis to days of the week.

Please see
xdtics
for details.

1.260 gnuplot.guide/ylabel

ylabel

This command sets the label for the y axis. Please see
xlabel
.

1.261 gnuplot.guide/ymtics

ymtics

The
ymtics
command changes tics on the y axis to months of the year.

Please see
xmtics
for details.

1.262 gnuplot.guide/yrange

yrange

The
yrange
command sets the vertical range that will be displayed on

the y axis. Please see
xrange

gnuplot 191 / 236

for details.

1.263 gnuplot.guide/ytics

ytics

The
ytics
command controls major (labelled) tics on the y axis.

Please see
xtics
for details.

1.264 gnuplot.guide/yzeroaxis

yzeroaxis

The
yzeroaxis
command draws a line at x = 0. For details, please

see
zeroaxis
.

1.265 gnuplot.guide/zdata

zdata

Set zaxis date to timeseries (dates/times). Please see
xdata
.

1.266 gnuplot.guide/zdtics

gnuplot 192 / 236

zdtics

The
zdtics
command changes tics on the z axis to days of the week.

Please see
xdtics
for details.

1.267 gnuplot.guide/zero

zero

The ‘zero‘ value is the default threshold for values approaching 0.0.

Syntax:
set zero <expression>
show zero

‘gnuplot‘ will not plot a point if its imaginary part is greater in
magnitude than the ‘zero‘ threshold. This threshold is also used in
various other parts of ‘gnuplot‘ as a (crude) numerical-error
threshold. The default ‘zero‘ value is 1e-8. ‘zero‘ values larger
than 1e-3 (the reciprocal of the number of pixels in a typical bitmap
display) should probably be avoided, but it is not unreasonable to set
‘zero‘ to 0.0.

1.268 gnuplot.guide/zeroaxis

zeroaxis

The x axis may be drawn by
xzeroaxis
and removed by ‘set

noxzeroaxis‘. Similar commands behave similarly for the y, x2, and y2
axes.

Syntax:
set {x|x2|y|y2|}zeroaxis { {linestyle | ls <line_style>}

| { linetype | lt <line_type>}
{ linewidth | lw <line_width>}}

set no{x|x2|y|y2|}zeroaxis
show {x|y|}zeroaxis

By default, these options are off. The selected zero axis is drawn

gnuplot 193 / 236

with a line of type <line_type> and width <line_width> (if supported by
the terminal driver currently in use), or a user-defined style
<line_style>.

If no linetype is specified, any zero axes selected will be drawn
using the axis linetype (linetype 0).

‘set zeroaxis l‘ is equivalent to ‘set xzeroaxis l; set yzeroaxis
l‘. ‘set nozeroaxis‘ is equivalent to ‘set noxzeroaxis; set
noyzeroaxis‘.

1.269 gnuplot.guide/zlabel

zlabel

This command sets the label for the z axis. Please see
xlabel
.

1.270 gnuplot.guide/zmtics

zmtics

The
zmtics
command changes tics on the z axis to months of the year.

Please see
xmtics
for details.

1.271 gnuplot.guide/zrange

zrange

The
zrange
command sets the range that will be displayed on the z

axis. The zrange is used only by ‘splot‘ and is ignored by
plot
.

Please see

gnuplot 194 / 236

xrange
for details.

1.272 gnuplot.guide/ztics

ztics

The
ztics
command controls major (labelled) tics on the z axis.

Please see
xtics
for details.

1.273 gnuplot.guide/shell

shell
=====

The
shell
command spawns an interactive shell. To return to

‘gnuplot‘, type ‘logout‘ if using VMS,
exit
or the END-OF-FILE

character if using Unix, ‘endcli‘ if using AmigaOS, or
exit
if using

MS-DOS or OS/2.

A single shell command may be spawned by preceding it with the !
character ($ if using VMS) at the beginning of a command line. Control
will return immediately to ‘gnuplot‘ after this command is executed.
For example, in Unix, AmigaOS, MS-DOS or OS/2,

! dir

prints a directory listing and then returns to ‘gnuplot‘.

On an Atari, the ‘!‘ command first checks whether a shell is already
loaded and uses it, if available. This is practical if ‘gnuplot‘ is
run from ‘gulam‘, for example.

gnuplot 195 / 236

1.274 gnuplot.guide/splot

splot
=====

‘splot‘ is the command for drawing 3-d plots (well, actually
projections on a 2-d surface, but you knew that). It can create a plot
from functions or a data file in a manner very similar to the

plot
command.

See
plot
for features common to the

plot
command; only differences

are discussed in detail here. Note specifically that the
binary
and

matrix
options (discussed under "datafile-modifiers") are not available ←↩

for

plot
.

Syntax:
splot {<ranges>}

<function> | "<datafile>" {datafile-modifiers}}
{<title-spec>} {with <style>}
{, {definitions,} <function> ...}

where either a <function> or the name of a data file enclosed in
quotes is supplied. The function can be a mathematical expression, or
a triple of mathematical expressions in parametric mode.

By default ‘splot‘ draws the xy plane completely below the plotted
data. The offset between the lowest ztic and the xy plane can be
changed by

ticslevel
. The orientation of a ‘splot‘ projection is

controlled by
view
. See
view
and

ticslevel
for more information.

The syntax for setting ranges on the ‘splot‘ command is the same as
for

plot
. In non-parametric mode, the order in which ranges must be

given is
xrange
,

gnuplot 196 / 236

yrange
, and
zrange
. In parametric mode, the order

is
urange
,
vrange
,
xrange
,
yrange
, and
zrange
.

The ‘title‘ option is the same as in
plot
. The operation of
with
is also the same as in
plot
, except that the plotting styles available

to ‘splot‘ are limited to ‘lines‘, ‘points‘,
linespoints
,
dots
, and

impulses
; the error-bar capabilities of
plot
are not available for

‘splot‘.

The datafile options have more differences.

data-file_

grid_data

splot_overview

1.275 gnuplot.guide/data-file_

data-file

As for
plot
, discrete data contained in a file can be displayed by

specifying the name of the data file, enclosed in quotes, on the

gnuplot 197 / 236

‘splot‘ command line.

Syntax:
splot ’<file_name>’ {binary | matrix}

{index <index list>}
{every <every list>}
{using <using list>}

The special filenames ‘""‘ and ‘"-"‘ are permitted, as in
plot
.

In brief,
binary
and

matrix
indicate that the the data are in a

special form,
index
selects which data sets in a multi-data-set file

are to be plotted,
every
specifies which datalines (subsets) within a

single data set are to be plotted, and
using
determines how the

columns within a single record are to be interpreted.

The options
index
and

every
behave the same way as with

plot
;
using
does so also, except that the
using
list must provide three entries

instead of two.

The
plot
options

thru
and

smooth
are not available for ‘splot‘,

but ‘cntrparams‘ and
dgrid3d
provide limited smoothing cabilities.

Data file organization is essentially the same as for
plot
, except

that each point is an (x,y,z) triple. If only a single value is
provided, it will be used for z, the datablock number will be used for

gnuplot 198 / 236

y, and the index of the data point in the datablock will be used for x.
If two values are provided, ‘gnuplot‘ gives you an error message.
Three values are interpreted as an (x,y,z) triple. Additional values
are generally used as errors, which can be used by ‘fit‘.

Single blank records separate datablocks in a ‘splot‘ datafile;
‘splot‘ treats datablocks as the equivalent of function y-isolines. No
line will join points separated by a blank record. If all datablocks
contain the same number of points, ‘gnuplot‘ will draw cross-isolines
between datablocks, connecting corresponding points. This is termed
"grid data", and is required for drawing a surface, for contouring
(

contour
) and hidden-line removal (
hidden3d
). See also ‘splot grid

data‘

It is no longer necessary to specify ‘parametric‘ mode for
three-column ‘splot‘s.

binary

example_datafile_

matrix

1.276 gnuplot.guide/binary

binary
......

‘splot‘ can read binary files written with a specific format (and on
a system with a compatible binary file representation.)

In previous versions, ‘gnuplot‘ dynamically detected binary data
files. It is now necessary to specify the keyword

binary
directly

after the filename.

Single precision floats are stored in a binary file as follows:

<N+1> <y0> <y1> <y2> ... <yN>
<x0> <z0,0> <z0,1> <z0,2> ... <z0,N>
<x1> <z1,0> <z1,1> <z1,2> ... <z1,N>
: : : : ... :

which are converted into triplets:
<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>

gnuplot 199 / 236

: : :
<x0> <yN> <z0,N>

<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
: : :

These triplets are then converted into ‘gnuplot‘ iso-curves and then
‘gnuplot‘ proceeds in the usual manner to do the rest of the plotting.

A collection of matrix and vector manipulation routines (in C) is
provided in ‘binary.c‘. The routine to write binary data is

int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)

An example of using these routines is provided in the file
‘bf_test.c‘, which generates binary files for the demo file
‘demo/binary.dem‘.

The
index
keyword is not supported, since the file format allows

only one surface per file. The
every
and

using
filters are

supported.
using
operates as if the data were read in the above

triplet form.
Binary File Splot Demo. (http://www.gnuplot.vt.edu/gnuplot/gpdocs/binary.html)

1.277 gnuplot.guide/example_datafile_

example datafile
................

A simple example of plotting a 3-d data file is

splot ’datafile.dat’

where the file "datafile.dat" might contain:

The valley of the Gnu.
0 0 10
0 1 10
0 2 10

1 0 10
1 1 5
1 2 10

gnuplot 200 / 236

2 0 10
2 1 1
2 2 10

3 0 10
3 1 0
3 2 10

Note that "datafile.dat" defines a 4 by 3 grid (4 rows of 3 points
each). Rows (datablocks) are separated by blank records.

Note also that the x value is held constant within each dataline.
If you instead keep y constant, and plot with hidden-line removal
enabled, you will find that the surface is drawn ’inside-out’.

Actually for grid data it is not necessary to keep the x values
constant within a datablock, nor is it necessary to keep the same
sequence of y values. ‘gnuplot‘ requires only that the number of
points be the same for each datablock. However since the surface mesh,
from which contours are derived, connects sequentially corresponding
points, the effect of an irregular grid on a surface plot is
unpredictable and should be examined on a case-by-case basis.

1.278 gnuplot.guide/matrix

matrix
......

The
matrix
flag indicates that the ASCII data are stored in matrix

format. The z-values are read in a row at a time, i. e.,
z11 z12 z13 z14 ...
z21 z22 z23 z24 ...
z31 z32 z33 z34 ...

and so forth. The row and column indices are used for the x- and
y-values.

1.279 gnuplot.guide/grid_data

grid_data

The 3D routines are designed for points in a grid format, with one
sample, datapoint, at each mesh intersection; the datapoints may
originate from either evaluating a function, see

isosamples
, or

gnuplot 201 / 236

reading a datafile, see ‘splot datafile‘. The term "isoline" is
applied to the mesh lines for both functions and data. Note that the
mesh need not be rectangular in x and y, as it may be parameterized in
u and v, see

isosamples
.

However, ‘gnuplot‘ does not require that format. In the case of
functions, ’samples’ need not be equal to ’isosamples’, i.e., not every
x-isoline sample need intersect a y-isoline. In the case of data files,
if there are an equal number of scattered data points in each
datablock, then "isolines" will connect the points in a datablock, and
"cross-isolines" will connect the corresponding points in each
datablock to generate a "surface". In either case, contour and
hidden3d modes may give different plots than if the points were in the
intended format. Scattered data can be converted to a {different} grid
format with

dgrid3d
.

The contour code tests for z intensity along a line between a point
on a y-isoline and the corresponding point in the next y-isoline. Thus
a ‘splot‘ contour of a surface with samples on the x-isolines that do
not coincide with a y-isoline intersection will ignore such samples.
Try:

set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]
set function style lp
set contour
set isosamples 10,10; set samples 10,10;
splot cos(x)*cos(y)
set samples 4,10; replot
set samples 10,4; replot

1.280 gnuplot.guide/splot_overview

splot_overview

‘splot‘ can display a surface as a collection of points, or by
connecting those points. As with

plot
, the points may be read from a

data file or result from evaluation of a function at specified
intervals, see

isosamples
. The surface may be approximated by

connecting the points with straight line segments, see
surface
, in

which case the surface can be made opaque with ‘set hidden3d.‘ The
orientation from which the 3d surface is viewed can be changed with

view

gnuplot 202 / 236

.

Additionally, for points in a grid format, ‘splot‘ can interpolate
points having a common amplitude (see

contour
) and can then connect

those new points to display contour lines, either directly with
straight-line segments or smoothed lines (see ‘set cntrparams‘).
Functions are already evaluated in a grid format, determined by

isosamples
and

samples
, while file data must either be in a grid

format, as described in ‘data-file‘, or be used to generate a grid (see

dgrid3d
).

Contour lines may be displayed either on the surface or projected
onto the base. The base projections of the contour lines may be
written to a file, and then read with

plot
, to take advantage of

plot
’s additional formatting capabilities.

1.281 gnuplot.guide/test

test
====

test
creates a display of line and point styles and other useful ←↩

things
appropriate for the terminal you are using.

Syntax:
test

1.282 gnuplot.guide/update

update
======

This command writes the current values of the fit parameters into

gnuplot 203 / 236

the given file, formatted as an initial-value file (as described in the
‘fit‘section). This is useful for saving the current values for later
use or for restarting a converged or stopped fit.

Syntax:
update <filename> {<filename>}

If a second filename is supplied, the updated values are written to
this file, and the original parameter file is left unmodified.

Otherwise, if the file already exists, ‘gnuplot‘ first renames it by
appending ‘.old‘ and then opens a new file. That is, "‘update ’fred’‘"
behaves the same as "‘!rename fred fred.old; update ’fred.old’ ’fred’‘".
[On DOS and other systems that use the twelve-character "filename.ext"
naming convention, "ext" will be "‘old‘" and "filename" will be related
(hopefully recognizably) to the initial name. Renaming is not done at
all on VMS systems, since they use file-versioning.]

Please see ‘fit‘ for more information.

1.283 gnuplot.guide/Graphical_User_Interfaces

Graphical User Interfaces

Several graphical user interfaces have been written for ‘gnuplot‘
and one for win32 is included in this distribution. In addition, there
is a Macintosh interface at
ftp://ftp.ee.gatech.edu/pub/mac/gnuplot
(ftp://ftp.ee.gatech.edu/pub/mac/gnuplot) and several X11 interfaces
include three Tcl/Tk located at the usual Tcl/Tk repositories.

1.284 gnuplot.guide/Bugs

Bugs

Floating point exceptions (floating point number too large/small,
divide by zero, etc.) may occasionally be generated by user defined
functions. Some of the demos in particular may cause numbers to exceed
the floating point range. Whether the system ignores such exceptions
(in which case ‘gnuplot‘ labels the corresponding point as undefined)
or aborts ‘gnuplot‘ depends on the compiler/runtime environment.

The bessel functions do not work for complex arguments.

The gamma function does not work for complex arguments.

As of ‘gnuplot‘ version 3.7, all development has been done using
ANSI C. With current operating system, compiler, and library releases,

gnuplot 204 / 236

the OS specific bugs documented in release 3.5, now relegated to
‘old_bugs‘, may no longer be relevant.

Bugs reported since the current release may be located via the
official distribution site:

ftp://ftp.dartmouth.edu/pub/gnuplot
http://www.cs.dartmouth.edu/gnuplot_info.html

Please e-mail any bugs to bug-gnuplot@dartmouth.edu.

Old_bugs

1.285 gnuplot.guide/Old_bugs

Old_bugs
========

There is a bug in the stdio library for old Sun operating systems
(SunOS Sys4-3.2). The "%g" format for ’printf’ sometimes incorrectly
prints numbers (e.g., 200000.0 as "2"). Thus, tic mark labels may be
incorrect on a Sun4 version of ‘gnuplot‘. A work-around is to rescale
the data or use the ‘set format‘ command to change the tic mark format
to "%7.0f" or some other appropriate format. This appears to have been
fixed in SunOS 4.0.

Another bug: On a Sun3 under SunOS 4.0, and on Sun4’s under Sys4-3.2
and SunOS 4.0, the ’sscanf’ routine incorrectly parses "00 12" with the
format "%f %f" and reads 0 and 0 instead of 0 and 12. This affects
data input. If the data file contains x coordinates that are zero but
are specified like ’00’, ’000’, etc, then you will read the wrong y
values. Check any data files or upgrade the SunOS. It appears to have
been fixed in SunOS 4.1.1.

Suns appear to overflow when calculating exp(-x) for large x, so
‘gnuplot‘ gets an undefined result. One work-around is to make a
user-defined function like e(x) = x<-500 ? 0 : exp(x). This affects
plots of Gaussians (exp(-x*x)) in particular, since x*x grows quite
rapidly.

Microsoft C 5.1 has a nasty bug associated with the %g format for
’printf’. When any of the formats "%.2g", "%.1g", "%.0g", "%.g" are
used, ’printf’ will incorrectly print numbers in the range 1e-4 to
1e-1. Numbers that should be printed in the %e format are incorrectly
printed in the %f format, with the wrong number of zeros after the
decimal point. To work around this problem, use the %e or %f formats
explicitly.

‘gnuplot‘, when compiled with Microsoft C, did not work correctly on
two VGA displays that were tested. The CGA, EGA and VGA drivers should
probably be rewritten to use the Microsoft C graphics library.
‘gnuplot‘ compiled with Borland C++ uses the Turbo C graphics drivers
and does work correctly with VGA displays.

gnuplot 205 / 236

VAX/VMS 4.7 C compiler release 2.4 also has a poorly implemented %g
format for ’printf’. The numbers are printed numerically correct, but
may not be in the requested format. The K&R second edition says that
for the %g format, %e is used if the exponent is less than -4 or
greater than or equal to the precision. The VAX uses %e format if the
exponent is less than -1. The VAX appears to take no notice of the
precision when deciding whether to use %e or %f for numbers less than
1. To work around this problem, use the %e or %f formats explicitly.
From the VAX C 2.4 release notes: e,E,f,F,g,G Result will always
contain a decimal point. For g and G, trailing zeros will not be
removed from the result.

VAX/VMS 5.2 C compiler release 3.0 has a slightly better implemented
%g format than release 2.4, but not much. Trailing decimal points are
now removed, but trailing zeros are still not removed from %g numbers in
exponential format.

The two preceding problems are actually in the libraries rather than
in the compilers. Thus the problems will occur whether ‘gnuplot‘ is
built using either the DEC compiler or some other one (e.g. the latest
gcc).

ULTRIX X11R3 has a bug that causes the X11 driver to display "every
other" graph. The bug seems to be fixed in DEC’s release of X11R4 so
newer releases of ULTRIX don’t seem to have the problem. Solutions for
older sites include upgrading the X11 libraries (from DEC or direct
from MIT) or defining ULTRIX_KLUDGE when compiling the x11.trm file.
Note that the kludge is not an ideal fix, however.

The constant HUGE was incorrectly defined in the NeXT OS 2.0
operating system. HUGE should be set to 1e38 in plot.h. This error has
been corrected in the 2.1 version of NeXT OS.

Some older models of HP plotters do not have a page eject command
’PG’. The current HPGL driver uses this command in HPGL_reset. This
may need to be removed for these plotters. The current PCL5 driver
uses HPGL/2 for text as well as graphics. This should be modified to
use scalable PCL fonts.

On the Atari version, it is not possible to send output directly to
the printer (using ‘/dev/lp‘ as output file), since CRs are added to
LFs in binary output. As a work-around, write the output to a file and
copy it to the printer afterwards using a shell command.

On AIX 4, the literal ’NaNq’ in a datafile causes the special
internal value ’not-a-number’ to be stored, rather than setting an
internal ’undefined’ flag. A workaround is to use ‘set missing ’NaNq’‘.

There may be an up-to-date list of bugs since the release on the WWW
page:

http://www.cs.dartmouth.edu/gnuplot_info.html

Please report any bugs to bug-gnuplot@dartmouth.edu.

gnuplot 206 / 236

1.286 gnuplot.guide/Concept_Index

Concept Index

.gnuplot
Start-up

abs
abs

acos
acos

acosh
acosh

acsplines
smooth

aifm
aifm

angles
angles

arg
arg

arrow
arrow

asin
asin

asinh
asinh

atan
atan

atan2
atan2

atanh
atanh

autoscale
autoscale

bargraph
boxes

batch-interactive
Batch-Interactive_Operation

gnuplot 207 / 236

besj0
besj0

besj1
besj1

besy0
besy0

besy1
besy1

bezier
smooth

binary <1>
binary

binary
Binary

bitgraph
tek40

bmargin
bmargin

border
border

boxerrorbars
boxerrorbars

boxes
boxes

boxwidth
boxwidth

boxxyerrorbars
boxxyerrorbars

branch
multi-branch

bugs
Bugs

call
call

candlesticks
candlesticks

cd
cd

gnuplot 208 / 236

ceil
ceil

cgm
cgm

clabel
clabel

clear
clear

clip
clip

cntrparam
cntrparam

color_resources
x11

column
column

command-line-editing
Command-line-editing

command-line-options
x11

commands
Commands

comments
Comments

contour
contour

coordinates
Coordinates

copyright
Copyright

corel
corel

cos
cos

cosh
cosh

csplines
smooth

gnuplot 209 / 236

data
data-file

data-file
data-file

datafile
data-file

degrees
angles

dgrid3d
dgrid3d

dots
dots

dumb
dumb

dummy
dummy

dxf
dxf

editing
Command-line-editing

editing_postscript
postscript

eepic
eepic

emtex
latex

encoding
encoding

enhanced_postscript
postscript

environment
Environment

epson-180dpi
epson-180dpi

epson-60dpi
epson-180dpi

epson-lx800
epson-180dpi

gnuplot 210 / 236

erf
erf

erfc
erfc

errorbars <1>
yerrorbars

errorbars
errorbars

every
every

example
example_datafile

exit
exit

exp
exp

expressions
Expressions

fig
fig

financebars
financebars

fit
fit

fit_control
fit_controlling

fit_parameters
adjustable_parameters

fitting
beginner’s_guide

floor
floor

format
format

format_specifiers
format_specifiers

fsteps
fsteps

gnuplot 211 / 236

functions
Functions

gamma
gamma

gif
gif

glossary
Glossary

gpic
gpic

grayscale_resources
x11

grid
grid

grid_data
grid_data

gui’s
Graphical_User_Interfaces

guidelines
practical_guidelines

help
help

hidden3d
hidden3d

histeps
histeps

history
Command-line-editing

hp2623a
hp2623a

hp2648
hp2648

hp500c
hp500c

hpdj
hpljii

hpgl
hpgl

gnuplot 212 / 236

hpljii
hpljii

hppj
hppj

ibeta
ibeta

if
if

igamma
igamma

imag
imag

imagen
imagen

impulses
impulses

index
index

int
int

introduction
Introduction

inverf
inverf

invnorm
invnorm

isosamples
isosamples

kc-tek40xx
tek40

key
key

km-tek40xx
tek40

label
label

latex
latex

gnuplot 213 / 236

least-squares
fit

legend
key

lgamma
lgamma

license
Copyright

line-editing
Command-line-editing

line_resources
x11

lines
lines

linespoints
linespoints

linestyle
linestyle

lmargin
lmargin

load
load

locale
locale

log
log

log10
log10

logscale
logscale

lp
linespoints

mapping
mapping

margin
margin

Marquardt
fit

gnuplot 214 / 236

matrix
matrix

metafont
mf

mf
mf

mif
mif

missing
missing

monochrome_options
x11

multi-branch
multi-branch

multiplot
multiplot

mx2tics
mx2tics

mxtics
mxtics

my2tics
my2tics

mytics
mytics

mztics
mztics

nec-cp6
epson-180dpi

new-features
What’s_New_in_version_3.7

noarrow
arrow

noautoscale
autoscale

noborder
border

noclabel
clabel

gnuplot 215 / 236

noclip
clip

nocontour
contour

nodgrid3d
dgrid3d

nogrid
grid

nohidden3d
hidden3d

nokey
key

nolabel
label

nologscale
logscale

nomultiplot
multiplot

nomx2tics
mx2tics

nomxtics
mxtics

nomy2tics
my2tics

nomytics
mytics

nomztics
mztics

nooffsets
offsets

noparametric
parametric_

nopolar
polar

norm
norm

nosurface
surface

gnuplot 216 / 236

notimestamp
timestamp

nox2dtics
x2dtics

nox2mtics
x2mtics

nox2tics
x2tics

nox2zeroaxis
x2zeroaxis

noxdtics
xdtics

noxmtics
xmtics

noxtics
xtics

noxzeroaxis
xzeroaxis

noy2dtics
y2dtics

noy2mtics
y2mtics

noy2tics
y2tics

noy2zeroaxis
y2zeroaxis

noydtics
ydtics

noymtics
ymtics

noytics
ytics

noyzeroaxis
yzeroaxis

nozdtics
zdtics

nozeroaxis
zeroaxis

gnuplot 217 / 236

nozmtics
zmtics

noztics
ztics

offsets
offsets

okidata
epson-180dpi

old_bugs
Old_bugs

operators
Operators

origin
origin

os_bugs
Old_bugs

output
output

parametric <1>
parametric_

parametric
parametric

pause
pause

pbm
pbm

pcl5
hpgl

plot
plot

plotting
Plotting

png
png

points
points

pointsize
pointsize

gnuplot 218 / 236

polar
polar

postscript
postscript

practical_guidelines
practical_guidelines

print
print

pslatex
pslatex_and_pstex

pstex
pslatex_and_pstex

pstricks
pstricks

punctuation
Syntax

pwd
pwd

qms
qms

quit
quit

rand
rand

ranges
ranges

real
real

regis
regis

replot
replot

reread
reread

reset
reset

rmargin
rmargin

gnuplot 219 / 236

rrange
rrange

samples
samples

save
save

sbezier
smooth

seeking-assistance
Seeking-assistance

selanar
tek40

set
set-show

sgn
sgn

shell
shell

show
set-show

sin
sin

sinh
sinh

size
size

smooth
smooth

special-filenames
special-filenames

specify
Syntax

splot
splot

sqrt
sqrt

starc
epson-180dpi

gnuplot 220 / 236

start
Start-up

starting_values
starting_values

startup
Start-up

statistical_overview
statistical_overview

steps
steps

style
with

substitution
Substitution

sun
sun

surface
surface

syntax
Syntax

table
table

tan
tan

tandy-60dpi
epson-180dpi

tanh
tanh

tek40
tek40

tek410x
tek410x

term
terminal

terminal
terminal

ternary
Ternary

gnuplot 221 / 236

test
test

texdraw
texdraw

tgif
tgif

thru
thru

tics
tics

ticscale
ticscale

ticslevel
ticslevel

time-date
Time-Date_data

time-date_specifiers
time-date_specifiers

timefmt
timefmt

timestamp
timestamp

tips
tips

title
title_

tkcanvas
tkcanvas

tmargin
tmargin

tpic
tpic

trange
trange

unary
Unary

unique
smooth

gnuplot 222 / 236

update
update

urange
urange

user-defined
User-defined

using
using

valid
valid

variables
User-defined

vector
vector

view
view

vrange
vrange

vttek
tek40

with
with

X11
x11

x11
x11

x2data
x2data

x2dtics
x2dtics

x2label
x2label

x2mtics
x2mtics

x2range
x2range

x2tics
x2tics

gnuplot 223 / 236

x2zeroaxis
x2zeroaxis

xdata
xdata

xdtics
xdtics

xerrorbars
xerrorbars

xlabel
xlabel

xlib
xlib

xmtics
xmtics

xrange
xrange

xtics
xtics

xyerrorbars
xyerrorbars

xzeroaxis
xzeroaxis

y2data
y2data

y2dtics
y2dtics

y2label
y2label

y2mtics
y2mtics

y2range
y2range

y2tics
y2tics

y2zeroaxis
y2zeroaxis

ydata
ydata

gnuplot 224 / 236

ydtics
ydtics

yerrorbars
yerrorbars

ylabel
ylabel

ymtics
ymtics

yrange
yrange

ytics
ytics

yzeroaxis
yzeroaxis

zdata
zdata

zdtics
zdtics

zero
zero

zeroaxis
zeroaxis

zlabel
zlabel

zmtics
zmtics

zrange
zrange

ztics
ztics

1.287 gnuplot.guide/Command_Index

Command Index

gnuplot 225 / 236

call
call

cd
cd

clear
clear

exit
exit

fit
fit

help
help

if
if

load
load

pause
pause

plot
plot

print
print

pwd
pwd

quit
quit

replot
replot

reread
reread

reset
reset

save
save

shell
shell

splot
splot

gnuplot 226 / 236

test
test

update
update

1.288 gnuplot.guide/Options_Index

Options Index

angles
angles

arrow
arrow

autoscale
autoscale

bmargin
bmargin

border
border

boxwidth
boxwidth

clabel
clabel

clip
clip

cntrparam
cntrparam

contour
contour

dgrid3d
dgrid3d

dummy
dummy

encoding
encoding

gnuplot 227 / 236

format
format

functions
Functions

grid
grid

hidden3d
hidden3d

isosamples
isosamples

key
key

label
label

linestyle
linestyle

lmargin
lmargin

locale
locale

logscale
logscale

mapping
mapping

margin
margin

missing
missing

multiplot
multiplot

mx2tics
mx2tics

mxtics
mxtics

my2tics
my2tics

mytics
mytics

gnuplot 228 / 236

mztics
mztics

offsets
offsets

origin
origin

output
output

parametric <1>
parametric

parametric
parametric_

pointsize
pointsize

polar
polar

rmargin
rmargin

rrange
rrange

samples
samples

size
size

style
with

surface
surface

terminal
terminal

tics
tics

ticscale
ticscale

ticslevel
ticslevel

timefmt
timefmt

gnuplot 229 / 236

timestamp
timestamp

title
title_

tmargin
tmargin

trange
trange

urange
urange

variables
User-defined

view
view

vrange
vrange

x2data
x2data

x2dtics
x2dtics

x2label
x2label

x2mtics
x2mtics

x2range
x2range

x2tics
x2tics

x2zeroaxis
x2zeroaxis

xdata
xdata

xdtics
xdtics

xlabel
xlabel

xmtics
xmtics

gnuplot 230 / 236

xrange
xrange

xtics
xtics

xzeroaxis
xzeroaxis

y2data
y2data

y2dtics
y2dtics

y2label
y2label

y2mtics
y2mtics

y2range
y2range

y2tics
y2tics

y2zeroaxis
y2zeroaxis

ydata
ydata

ydtics
ydtics

ylabel
ylabel

ymtics
ymtics

yrange
yrange

ytics
ytics

yzeroaxis
yzeroaxis

zdata
zdata

zdtics
zdtics

gnuplot 231 / 236

zero
zero

zeroaxis
zeroaxis

zlabel
zlabel

zmtics
zmtics

zrange
zrange

ztics
ztics

1.289 gnuplot.guide/Function_Index

Function Index

abs
abs

acos
acos

acosh
acosh

arg
arg

asin
asin

asinh
asinh

atan
atan

atan2
atan2

atanh
atanh

gnuplot 232 / 236

besj0
besj0

besj1
besj1

besy0
besy0

besy1
besy1

ceil
ceil

column
column

cos
cos

cosh
cosh

erf
erf

erfc
erfc

exp
exp

floor
floor

gamma
gamma

ibeta
ibeta

igamma
igamma

imag
imag

int
int

inverf
inverf

invnorm
invnorm

gnuplot 233 / 236

lgamma
lgamma

log
log

log10
log10

norm
norm

rand
rand

real
real

sgn
sgn

sin
sin

sinh
sinh

sqrt
sqrt

tan
tan

tanh
tanh

tm_hour
tm_hour

tm_mday
tm_mday

tm_min
tm_min

tm_mon
tm_mon

tm_sec
tm_sec

tm_wday
tm_wday

tm_yday
tm_yday

gnuplot 234 / 236

tm_year
tm_year

valid
valid

1.290 gnuplot.guide/Terminal_Index

Terminal Index

aifm
aifm

bitgraph
tek40

cgm
cgm

corel
corel

dumb
dumb

dxf
dxf

eepic
eepic

emtex
latex

epson-180dpi
epson-180dpi

epson-60dpi
epson-180dpi

epson-lx800
epson-180dpi

fig
fig

gif
gif

gnuplot 235 / 236

gpic
gpic

hp2623a
hp2623a

hp2648
hp2648

hp500c
hp500c

hpdj
hpljii

hpgl
hpgl

hpljii
hpljii

hppj
hppj

imagen
imagen

kc-tek40xx
tek40

km-tek40xx
tek40

latex
latex

mif
mif

nec-cp6
epson-180dpi

okidata
epson-180dpi

pbm
pbm

pcl5
hpgl

png
png

postscript
postscript

gnuplot 236 / 236

pslatex
pslatex_and_pstex

pstex
pslatex_and_pstex

pstricks
pstricks

qms
qms

regis
regis

selanar
tek40

starc
epson-180dpi

sun
sun

table
table

tandy-60dpi
epson-180dpi

tek40
tek40

tek410x
tek410x

texdraw
texdraw

tgif
tgif

tkcanvas
tkcanvas

tpic
tpic

vttek
tek40

xlib
xlib

	gnuplot
	gnuplot.guide
	gnuplot.guide/gnuplot
	gnuplot.guide/Copyright
	gnuplot.guide/Introduction
	gnuplot.guide/Seeking-assistance
	gnuplot.guide/What's_New_in_version_3.7
	gnuplot.guide/Batch-Interactive_Operation
	gnuplot.guide/Command-line-editing
	gnuplot.guide/Comments
	gnuplot.guide/Coordinates
	gnuplot.guide/Environment
	gnuplot.guide/Expressions
	gnuplot.guide/Functions
	gnuplot.guide/abs
	gnuplot.guide/acos
	gnuplot.guide/acosh
	gnuplot.guide/arg
	gnuplot.guide/asin
	gnuplot.guide/asinh
	gnuplot.guide/atan
	gnuplot.guide/atan2
	gnuplot.guide/atanh
	gnuplot.guide/besj0
	gnuplot.guide/besj1
	gnuplot.guide/besy0
	gnuplot.guide/besy1
	gnuplot.guide/ceil
	gnuplot.guide/cos
	gnuplot.guide/cosh
	gnuplot.guide/erf
	gnuplot.guide/erfc
	gnuplot.guide/exp
	gnuplot.guide/floor
	gnuplot.guide/gamma
	gnuplot.guide/ibeta
	gnuplot.guide/inverf
	gnuplot.guide/igamma
	gnuplot.guide/imag
	gnuplot.guide/invnorm
	gnuplot.guide/int
	gnuplot.guide/lgamma
	gnuplot.guide/log
	gnuplot.guide/log10
	gnuplot.guide/norm
	gnuplot.guide/rand
	gnuplot.guide/real
	gnuplot.guide/sgn
	gnuplot.guide/sin
	gnuplot.guide/sinh
	gnuplot.guide/sqrt
	gnuplot.guide/tan
	gnuplot.guide/tanh
	gnuplot.guide/column
	gnuplot.guide/tm_hour
	gnuplot.guide/tm_mday
	gnuplot.guide/tm_min
	gnuplot.guide/tm_mon
	gnuplot.guide/tm_sec
	gnuplot.guide/tm_wday
	gnuplot.guide/tm_yday
	gnuplot.guide/tm_year
	gnuplot.guide/valid
	gnuplot.guide/Operators
	gnuplot.guide/Unary
	gnuplot.guide/Binary
	gnuplot.guide/Ternary
	gnuplot.guide/User-defined
	gnuplot.guide/Glossary
	gnuplot.guide/Plotting
	gnuplot.guide/Start-up
	gnuplot.guide/Substitution
	gnuplot.guide/Syntax
	gnuplot.guide/Time-Date_data
	gnuplot.guide/Commands
	gnuplot.guide/cd
	gnuplot.guide/call
	gnuplot.guide/clear
	gnuplot.guide/exit
	gnuplot.guide/fit
	gnuplot.guide/adjustable_parameters
	gnuplot.guide/beginner's_guide
	gnuplot.guide/error_estimates
	gnuplot.guide/statistical_overview
	gnuplot.guide/practical_guidelines
	gnuplot.guide/fit_controlling
	gnuplot.guide/control_variables
	gnuplot.guide/environment_variables
	gnuplot.guide/multi-branch
	gnuplot.guide/starting_values
	gnuplot.guide/tips
	gnuplot.guide/help
	gnuplot.guide/if
	gnuplot.guide/load
	gnuplot.guide/pause
	gnuplot.guide/plot
	gnuplot.guide/data-file
	gnuplot.guide/every
	gnuplot.guide/example_datafile
	gnuplot.guide/index
	gnuplot.guide/smooth
	gnuplot.guide/special-filenames
	gnuplot.guide/thru
	gnuplot.guide/using
	gnuplot.guide/errorbars
	gnuplot.guide/parametric
	gnuplot.guide/ranges
	gnuplot.guide/title
	gnuplot.guide/with
	gnuplot.guide/print
	gnuplot.guide/pwd
	gnuplot.guide/quit
	gnuplot.guide/replot
	gnuplot.guide/reread
	gnuplot.guide/reset
	gnuplot.guide/save
	gnuplot.guide/set-show
	gnuplot.guide/angles
	gnuplot.guide/arrow
	gnuplot.guide/autoscale
	gnuplot.guide/parametric_mode
	gnuplot.guide/polar_mode
	gnuplot.guide/bar
	gnuplot.guide/bmargin
	gnuplot.guide/border
	gnuplot.guide/boxwidth
	gnuplot.guide/clabel
	gnuplot.guide/clip
	gnuplot.guide/cntrparam
	gnuplot.guide/contour
	gnuplot.guide/data_style
	gnuplot.guide/dgrid3d
	gnuplot.guide/dummy
	gnuplot.guide/encoding
	gnuplot.guide/format
	gnuplot.guide/format_specifiers
	gnuplot.guide/time-date_specifiers
	gnuplot.guide/function_style
	gnuplot.guide/functions
	gnuplot.guide/grid
	gnuplot.guide/hidden3d
	gnuplot.guide/isosamples
	gnuplot.guide/key
	gnuplot.guide/label
	gnuplot.guide/linestyle
	gnuplot.guide/lmargin
	gnuplot.guide/locale
	gnuplot.guide/logscale
	gnuplot.guide/mapping
	gnuplot.guide/margin
	gnuplot.guide/missing
	gnuplot.guide/multiplot
	gnuplot.guide/mx2tics
	gnuplot.guide/mxtics
	gnuplot.guide/my2tics
	gnuplot.guide/mytics
	gnuplot.guide/mztics
	gnuplot.guide/offsets
	gnuplot.guide/origin
	gnuplot.guide/output
	gnuplot.guide/parametric_
	gnuplot.guide/pointsize
	gnuplot.guide/polar
	gnuplot.guide/rmargin
	gnuplot.guide/rrange
	gnuplot.guide/samples
	gnuplot.guide/size
	gnuplot.guide/style
	gnuplot.guide/boxerrorbars
	gnuplot.guide/boxes
	gnuplot.guide/boxxyerrorbars
	gnuplot.guide/candlesticks
	gnuplot.guide/dots
	gnuplot.guide/financebars
	gnuplot.guide/fsteps
	gnuplot.guide/histeps
	gnuplot.guide/impulses
	gnuplot.guide/lines
	gnuplot.guide/linespoints
	gnuplot.guide/points
	gnuplot.guide/steps
	gnuplot.guide/vector
	gnuplot.guide/xerrorbars
	gnuplot.guide/xyerrorbars
	gnuplot.guide/yerrorbars
	gnuplot.guide/surface
	gnuplot.guide/terminal
	gnuplot.guide/aifm
	gnuplot.guide/cgm
	gnuplot.guide/corel
	gnuplot.guide/dumb
	gnuplot.guide/dxf
	gnuplot.guide/eepic
	gnuplot.guide/epson-180dpi
	gnuplot.guide/fig
	gnuplot.guide/gif
	gnuplot.guide/gpic
	gnuplot.guide/hp2623a
	gnuplot.guide/hp2648
	gnuplot.guide/hp500c
	gnuplot.guide/hpgl
	gnuplot.guide/hpljii
	gnuplot.guide/hppj
	gnuplot.guide/imagen
	gnuplot.guide/latex
	gnuplot.guide/mf
	gnuplot.guide/mif
	gnuplot.guide/pbm
	gnuplot.guide/png
	gnuplot.guide/postscript
	gnuplot.guide/pslatex_and_pstex
	gnuplot.guide/pstricks
	gnuplot.guide/qms
	gnuplot.guide/regis
	gnuplot.guide/sun
	gnuplot.guide/tek410x
	gnuplot.guide/table
	gnuplot.guide/tek40
	gnuplot.guide/texdraw
	gnuplot.guide/tgif
	gnuplot.guide/tkcanvas
	gnuplot.guide/tpic
	gnuplot.guide/x11
	gnuplot.guide/xlib
	gnuplot.guide/tics
	gnuplot.guide/ticslevel
	gnuplot.guide/ticscale
	gnuplot.guide/timestamp
	gnuplot.guide/timefmt
	gnuplot.guide/title_
	gnuplot.guide/tmargin
	gnuplot.guide/trange
	gnuplot.guide/urange
	gnuplot.guide/variables
	gnuplot.guide/version
	gnuplot.guide/view
	gnuplot.guide/vrange
	gnuplot.guide/x2data
	gnuplot.guide/x2dtics
	gnuplot.guide/x2label
	gnuplot.guide/x2mtics
	gnuplot.guide/x2range
	gnuplot.guide/x2tics
	gnuplot.guide/x2zeroaxis
	gnuplot.guide/xdata
	gnuplot.guide/xdtics
	gnuplot.guide/xlabel
	gnuplot.guide/xmtics
	gnuplot.guide/xrange
	gnuplot.guide/xtics
	gnuplot.guide/xzeroaxis
	gnuplot.guide/y2data
	gnuplot.guide/y2dtics
	gnuplot.guide/y2label
	gnuplot.guide/y2mtics
	gnuplot.guide/y2range
	gnuplot.guide/y2tics
	gnuplot.guide/y2zeroaxis
	gnuplot.guide/ydata
	gnuplot.guide/ydtics
	gnuplot.guide/ylabel
	gnuplot.guide/ymtics
	gnuplot.guide/yrange
	gnuplot.guide/ytics
	gnuplot.guide/yzeroaxis
	gnuplot.guide/zdata
	gnuplot.guide/zdtics
	gnuplot.guide/zero
	gnuplot.guide/zeroaxis
	gnuplot.guide/zlabel
	gnuplot.guide/zmtics
	gnuplot.guide/zrange
	gnuplot.guide/ztics
	gnuplot.guide/shell
	gnuplot.guide/splot
	gnuplot.guide/data-file_
	gnuplot.guide/binary
	gnuplot.guide/example_datafile_
	gnuplot.guide/matrix
	gnuplot.guide/grid_data
	gnuplot.guide/splot_overview
	gnuplot.guide/test
	gnuplot.guide/update
	gnuplot.guide/Graphical_User_Interfaces
	gnuplot.guide/Bugs
	gnuplot.guide/Old_bugs
	gnuplot.guide/Concept_Index
	gnuplot.guide/Command_Index
	gnuplot.guide/Options_Index
	gnuplot.guide/Function_Index
	gnuplot.guide/Terminal_Index

